Skip to main content
Log in

A Theoretical Study on the Influence of Carbon and Silicon Doping on the Structural and Electronic Properties of (BeO)12 Nanocluster

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The influence of carbon and silicon atoms doping on the structural and electronic properties of the (BeO)12 nanocluster is investigated through density functional theory calculations. It has been found that doping process induces local deformation at bond lengths and angles near the doping site. The results indicate that C or Si doping decreases the energy gap of the (BeO)12 nanocluster. It seems that the electronic character of the (BeO)12 nanocluster could be adjusted by particular impurity. The electronic charge distributions are also analyzed using Atoms in Molecules theory. Natural bond orbital analyses are also performed for scrutinizing the structural properties of the considered nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  CAS  Google Scholar 

  2. M.R. Provorse, C.M. Aikens, Comp. Theor. Chem. 987, 16 (2012)

    Article  CAS  Google Scholar 

  3. M.L. Contreras, D. Avila, J. Alvarez, R. Rozas, Struct. Chem. 21, 573 (2010)

    Article  CAS  Google Scholar 

  4. D. Hossain, C.U. Pittman, S.R. Gwaltney, J. Inorg. Organomet. Polym Mater. (2013). doi:10.1007/s10904-013-9995-6

    Google Scholar 

  5. M.T. Baei, J. Cluster Sci. 24, 749 (2013)

    Article  CAS  Google Scholar 

  6. Z. Peralta-Inga, S. Boyd, J. Murray, C. O’Connor, P. Politzer, Struct. Chem. 14, 431 (2003)

    Article  CAS  Google Scholar 

  7. A. Jain, V. Kumar, Y. Kawazoe, Comp. Mater. Sci. 36, 258 (2006)

    Article  CAS  Google Scholar 

  8. L. Hong, H. Wang, J. Cheng, L. Tang, J. Zhao, Comp. Theor. Chem. 980, 62 (2012)

    Article  CAS  Google Scholar 

  9. P.B. Sorokin, A.S. Fedorov, L.A. Chernozatonskii, Phys. Solid State 48, 398 (2006)

    Article  CAS  Google Scholar 

  10. B. Baumeier, P. Kruger, J. Pollmann, Phys. Rev. B 76, 085407 (2007)

    Article  Google Scholar 

  11. M. Zhao, Y. Xia, F. Li, R.Q. Zhang, S.T. Lee, Phys. Rev. B 71, 085312 (2005)

    Article  Google Scholar 

  12. L.C. Ma, H.S. Zhao, W.J. Yan, J. Magn. Magn. Mater. 330, 174 (2013)

    Article  CAS  Google Scholar 

  13. S. Duman, A. Sütlü, S. Bağcl, H.M. Tütüncü, G.P. Sirvastava, J. Appl. Phys. 105, 033719 (2009)

    Article  Google Scholar 

  14. P. Pochet, L. Genovese, S. De, S. Goedecker, D. Caliste, S.A. Ghasemi, K. Bao, T. Deutsch, Phys. Rev B 83, 081403 (2011)

    Article  Google Scholar 

  15. D.E. Bean, J.T. Muya, P.W. Fowler, M.T. Nguyen, A. Ceulemans, Phys. Chem. Chem. Phys. 13, 20855 (2011)

    Article  CAS  Google Scholar 

  16. H.J. Xiang, Z.Y. Chen, J. Yang, J. Comput. Theor. Nanosci. 3, 838 (2006)

    Article  CAS  Google Scholar 

  17. J.T. Muya, E. Lijnen, M.T. Nguyen, A. Ceulemans, Chem. Phys. Chem. 14, 346 (2013)

    Article  CAS  Google Scholar 

  18. S. Polad, M. Ozay, Phys. Chem. Chem. Phys. 15, 19819 (2013)

    Article  CAS  Google Scholar 

  19. R. Fabiański, L. Firlej, A. Zahab, B. Kuchta, Solid State Sci. 4, 1009 (2002)

    Article  Google Scholar 

  20. R. Peköz, S. Erkoç, Comp. Mater. Sci. 46, 849 (2009)

    Article  Google Scholar 

  21. A.F. Jalbout, Comp. Mater. Sci. 44, 1065 (2009)

    Article  CAS  Google Scholar 

  22. J.H. Lee, B.S. Lee, F.T.K. Au, J. Zhang, Y. Zeng, Comp. Mater. Sci. 56, 131 (2012)

    Article  CAS  Google Scholar 

  23. L. Ren, L. Cheng, Y. Feng, X. Wang, J. Chem. Phys. 137, 014309 (2012)

    Article  Google Scholar 

  24. J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, J. Mol. Model. 18, 2653 (2012)

    Article  CAS  Google Scholar 

  25. J. Kakemam, A.A. Peyghan, Comput. Mater. Sci. 79, 352 (2013)

    Article  CAS  Google Scholar 

  26. M.T. Baei, M.B. Tabar, S. Hashemian, Adsorpt. Sci. Technol. 31, 469 (2013)

    Article  CAS  Google Scholar 

  27. I.R. Shein, M.V. Ryzhkov, M.A. Gorbunova, YuN Makurin, A.L. Ivanovskii, J. Exp. Theor. Phys. Lett. 85, 246 (2007)

    Article  CAS  Google Scholar 

  28. M.A. Gorbunova, I.R. Shein, YuN Makurin, V.V. Ivanovskaya, V.S. Kijko, A.L. Ivanovskii, Physica E 41, 164 (2008)

    Article  CAS  Google Scholar 

  29. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  30. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  31. R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72, 5639 (1980)

    Article  Google Scholar 

  32. J.P. Blaudeau, M.P. McGrath, L.A. Curtiss, L. Radom, J. Chem. Phys. 107, 5016 (1997)

    Article  CAS  Google Scholar 

  33. U. Salzner, J.B. Lagowski, P.G. Pickup, R.A. Poirier, J. Comput. Chem. 18, 1943 (1997)

    Article  CAS  Google Scholar 

  34. D.E. Wheeler, J.H. Rodriguez, J.K. McCusker, J. Phys. Chem. A 103, 4101 (1999)

    Article  CAS  Google Scholar 

  35. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,V.G. Zakrzewski, J.A. Montgomery, Jr. R.E. Stratmann, J.C. Burant, S. Dapprich,J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V.Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J.Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D.Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul,B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L.Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C.Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L.Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 03 Inc., Pittsburgh

  36. F. Biegler-König, J. Schönbohm, D. Bayles, J. Comput. Chem. 22, 545 (2001)

    Article  Google Scholar 

  37. N. O’Boyle, A. Tenderholt, K. Langner, J. Comput. Chem. 29, 839 (2008)

    Article  Google Scholar 

  38. F. Weinhold, C. R. Landis, Discovering Chemistry With Natural Bond Orbitals, John Wiley & Sons, Hoboken (2012)

  39. K.K. Pandey, G. Frenking, Eur. J. Inorg. Chem. 2004, 4388–4395 (2004)

    Article  Google Scholar 

  40. J.F. Janak, Phys. Rev. B 18, 7165 (1978)

    Article  CAS  Google Scholar 

  41. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983)

    Article  CAS  Google Scholar 

  42. R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford, 1990)

    Google Scholar 

  43. C.F. Matta, R.J. Boyd, The Quantum Theory of Atoms in Molecules (Wiley, Weinheim, 2007)

    Book  Google Scholar 

  44. V.G. Tsirelson, N.P. Tarasova, M.F. Bobrov, YuV Smetannikov, Heteroat. Chem. 17, 572 (2006)

    Article  CAS  Google Scholar 

  45. J.T. Muya, E. Lijnen, M.T. Nguyen, A. Ceulemans, J. Phys. Chem. A 115, 2268 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of this work by Shahid Chamran University of Ahvaz is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Shakerzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakerzadeh, E. A Theoretical Study on the Influence of Carbon and Silicon Doping on the Structural and Electronic Properties of (BeO)12 Nanocluster. J Inorg Organomet Polym 24, 694–705 (2014). https://doi.org/10.1007/s10904-014-0035-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-014-0035-y

Keywords

Navigation