Cluster-Containing Coordination Polymers Built Upon (Cu2I2S2)m Units (m = 2, 3) and ArSCH2C≡CCH2SAr Ligands: Is the Cluster Size Dependent Upon Steric Hindrance or Ligand Rigidity?

  • Shawkat M. Aly
  • Abdoulaye Pam
  • Abderrahim Khatyr
  • Michael Knorr
  • Yoann Rousselin
  • Marek M. Kubicki
  • Jonathan O. Bauer
  • Carsten Strohmann
  • Pierre D. Harvey


Two equivalents of CuI react with p-MeC6H4SCH2C≡CCH2SC6H4-p-Me (L2) to form the 2D network [(Cu4I4)(p-MeC6H4SCH2C≡CCH2SC6H4-p-Me)2] n (polymer 2) contrasting with the previously reported reaction with C6H5SCH2C≡CCH2SC6H5 (L1) which makes a 3D network [(Cu6I6)(C6H5SCH2C≡CCH2SC6H5)3] n (polymer 1) (2009, Dalton Trans. 948). The crystal structure of the latter polymer has been re-determined at 115, 155, 195, 235 and 275 K to study the impact of the recording temperature on the metric parameters, notably the Cu···Cu distances within the hexagonal prism Cu6I6 cluster. Steric hindrance between a 2D/(Cu4I4) versus 3D/(Cu6I6) appears to drive the selectivity. Upon using the ligand o-MeC6H4SCH2C≡CCH2SC6H4-o-Me (L3) with CuI, a new material (polymer 3) is formed but no X-ray structure determination was possible. From obvious steric considerations and the presence of a high energy emission characteristic of the well-known Cu4I4 cluster (absent in the Cu6I6 one), and the similarity in emission lifetime for both high and low energy emission of polymers 2 and 3, the nature of this polymer was proposed to be [(Cu4I4)(o-MeC6H4SCH2C≡CCH2SC6H4-o-Me)2] n .

Graphical Abstract


Copper halide cluster Coordination polymer Metal–organic framework X-ray structure Luminescence 



This research was supported by the CNRS, the Natural Sciences and Engineering Research Council of Canada (NSERC), le Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT), the Centre d’ Etudes des Matériaux Optiques et Photoniques de l’Université de Sherbrooke (CEMOPUS), and the Agence National de la Recherche (ANR) for a grant of a Research Chair of Excellence.

Supplementary material

10904_2013_9984_MOESM1_ESM.docx (735 kb)
Supplementary material 1 (DOCX 735 kb)


  1. 1.
    S.-B. Ren, Z.-J. Qiu, J. Yan, S.-L. Zhao, C.-L. Wu, W.-P. Jia, D.-M. Han, H.-D. Liang, J. Mol. Struct. 1046, 15 (2013)CrossRefGoogle Scholar
  2. 2.
    J.P. Safko, J.E. Kuperstock, S.M. McCullough, A.M. Noviello, X. Li, J.P. Killarney, C. Murphy, H.H. Patterson, C.A. Bayse, R.D. Pike, Dalton Trans. 41, 11663 (2012)CrossRefGoogle Scholar
  3. 3.
    D. Prochowicz, I. Justyniak, A. Kornowicz, T. Kaczorowski, Z. Kaszkur, J. Lewinski, Chem. Eur. J. 18, 7367 (2012)CrossRefGoogle Scholar
  4. 4.
    W.-X. Zhou, J. Li, W.-X. Xu, L.-F. Yuan, D. Braga, L. Maini, F.-X. Zhang, Inorg. Chim. Acta 382, 162 (2012)CrossRefGoogle Scholar
  5. 5.
    S.-Z. Zhan, M. Li, X.-P. Zhou, J.-H. Wang, J.-R. Yang, D. Li, Chem. Commun. 47, 12441 (2011)CrossRefGoogle Scholar
  6. 6.
    I.-H. Park, S.S. Lee, Cryst. Eng. Commun. 13, 6520 (2011)CrossRefGoogle Scholar
  7. 7.
    Y.-J. Fan, J.-Y. Liu, S.-Q. Zang, Y. Zhou, H.-W. Hou, J. Inorg. Organomet. Polym. Mat. 21, 718 (2011)CrossRefGoogle Scholar
  8. 8.
    Y. Cheng, P. Xu, Y.-B. Ding, Y.-G. Yin, Cryst. Eng. Commun. 13, 2644 (2011)CrossRefGoogle Scholar
  9. 9.
    J. Zhang, Y.-S. Xue, Y.-Z. Li, H.-B. Du, X.-Z. You, Cryst. Eng. Commun. 13, 2578 (2011)CrossRefGoogle Scholar
  10. 10.
    L.-X. Wang, L. Zhao, D.-X. Wang, M.-X. Wang, J. Solid State Chem. 183, 3010 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Hu, Z.-M. Zhang, Z.-S. Meng, Z.-J. Lin, M.-L. Tong, Cryst. Eng. Commun. 12, 4378 (2010)CrossRefGoogle Scholar
  12. 12.
    L.L. Li, Z.G. Ren, L. Xue, H.M. Wang, Y.J. Chang, H.X. Li, B. Wu, J.P. Lang, Sci. China Chem. 53, 2083 (2010)CrossRefGoogle Scholar
  13. 13.
    Y. Jin, H.J. Kim, J.Y. Lee, S.Y. Lee, W.J. Shim, S.H. Hong, S.S. Lee, Inorg. Chem. 49, 10241 (2010)CrossRefGoogle Scholar
  14. 14.
    A. Schindler, G. Balazs, M. Zabel, C. Groeger, R. Kalbitzer, M. Scheer, Comptes Rendus Chim. 13, 1241 (2010)CrossRefGoogle Scholar
  15. 15.
    E.-J. Kang, S.Y. Lee, H. Lee, S.S. Lee, Inorg. Chem. 49, 7510 (2010)CrossRefGoogle Scholar
  16. 16.
    S.-Q. Bai, J.Y. Kwang, L.L. Koh, D.J. Young, T.S.A. Hor, Dalton Trans. 39, 2631 (2010)CrossRefGoogle Scholar
  17. 17.
    D. Braga, L. Maini, P.P. Mazzeo, B. Ventura, Chem. Eur. J. 16, 1553 (2010)CrossRefGoogle Scholar
  18. 18.
    T.H. Kim, H. Yang, G. Park, K.Y. Lee, J. Kim, Chem. Asian J. 5, 252 (2010)CrossRefGoogle Scholar
  19. 19.
    X.-C. Chai, S. Zhang, Y.-P. Chen, Y.-Q. Sun, H.-H. Zhang, X.-L. Xu, Inorg. Chem. Commun. 13, 240 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Knorr, A. Pam, A. Khatyr, C. Strohmann, M.M. Kubicki, Y. Rousselin, S.M. Aly, D. Fortin, P.D. Harvey, Inorg. Chem. 49, 5834 (2010)CrossRefGoogle Scholar
  21. 21.
    Z.-G. Zhao, R.-M. Yu, X.-Y. Wu, Q.-S. Zhang, Y.-M. Xie, S.W. Ng, C.-Z. Lu, Cryst. Eng. Commun. 11, 2494 (2009)CrossRefGoogle Scholar
  22. 22.
    L.-L. Li, H.-X. Li, Z.-G. Ren, D. Liu, Y. Chen, Y. Zhang, J.-P. Lang, Dalton Trans. 38, 8567 (2009)CrossRefGoogle Scholar
  23. 23.
    C. Xie, L. Zhou, W. Feng, J. Wang, W. Chen, J. Mol. Struct. 921, 132 (2009)CrossRefGoogle Scholar
  24. 24.
    J.Y. Lee, H.J. Kim, J.H. Jung, W. Sim, S.S. Lee, J. Am. Chem. Soc. 130, 13838 (2008)CrossRefGoogle Scholar
  25. 25.
    Y. Chen, H.-X. Li, D. Liu, L–.L. Liu, N.-Y. Li, H.-Y. Ye, Y. Zhang, J.-P. Lang, Cryst. Growth Des. 8, 3810 (2008)CrossRefGoogle Scholar
  26. 26.
    H. Zhou, P. Lin, Z.-H. Li, S.-W. Du, J. Mol. Struct. 881, 21 (2008)CrossRefGoogle Scholar
  27. 27.
    J.Y. Lee, S.Y. Lee, W. Sim, K.-M. Park, J. Kim, S.S. Lee, J. Am. Chem. Soc. 130, 6902 (2008)CrossRefGoogle Scholar
  28. 28.
    C. Ganesamoorthy, J. T. Mague, and M. S. Balakrishna (2008). Eur. J. Inorg. Chem. 596 Google Scholar
  29. 29.
    T. Li, S.-W. Du, J. Cluster Sci. 19, 323 (2008)CrossRefGoogle Scholar
  30. 30.
    T.H. Kim, Y.W. Shin, J.H. Jung, J.S. Kim, J. Kim, Angew. Chem. Int. Ed. 47, 685 (2008)CrossRefGoogle Scholar
  31. 31.
    M. Bi, G. Li, J. Hua, X. Liu, Y. Hu, Z. Shi, S. Feng, Cryst. Eng. Commun. 9, 984 (2007)CrossRefGoogle Scholar
  32. 32.
    M. Knorr, F. Guyon, A. Khatyr, C. Däschlein, C. Strohmann, S. M. Aly, A. S. Abd-El-Aziz, D. Fortin, and P. D. Harvey (2009). Dalton Trans. 38, 948Google Scholar
  33. 33.
    X. Xue, X.-S. Wang, R.-G. Xiong, X.-Z. You, B.F. Abrahams, C.-M. Che, H.-X. Ju, Angew. Chem. Int. Ed. 41, 2944 (2002)CrossRefGoogle Scholar
  34. 34.
    H. Ohi, Y. Tachi, T. Kunimoto, and S. Itoh (2005). Dalton Trans. 34, 3146Google Scholar
  35. 35.
    M. Knorr, F. Guyon, A. Khatyr, C. Strohmann, M. Allain, S.M. Aly, A. Lapprand, D. Fortin, P.D. Harvey, Inorg. Chem. 51, 9917 (2012)CrossRefGoogle Scholar
  36. 36.
    H. N. Peindy, F. Guyon, A. Khatyr, M. Knorr, and C. Strohmann (2007). Eur. J. Inorg. Chem. 1823Google Scholar
  37. 37.
    M. Knorr, F. Guyon, M.M. Kubicki, Y. Rousselin, S.M. Aly, P.D. Harvey, New J. Chem. 35, 1184 (2011)CrossRefGoogle Scholar
  38. 38.
    H.D. Hardt, Naturwissenschaften 61, 107 (1974)CrossRefGoogle Scholar
  39. 39.
    H.D. Hardt, A. Pierre, Z. Anorg. Allg. Chem. 402, 107 (1973)CrossRefGoogle Scholar
  40. 40.
    F. De Angelis, S. Fantacci, A. Sgamellotti, E. Cariati, R. Ugo, P.C. Ford, Inorg. Chem. 45, 10576 (2006)CrossRefGoogle Scholar
  41. 41.
    F. Parmeggiani, A. Sacchetti, J. Chem. Educ. 89, 946 (2012)CrossRefGoogle Scholar
  42. 42.
    P. Schulte, G. Gröger, U. Behrens, J. Organomet. Chem. 584, 1 (1999)CrossRefGoogle Scholar
  43. 43.
    N.J. Turro, V. Ramamurthy, J.C. Scaiano, Modern molecular photochemistry of organic molecules (University Science Book, Sausito, 2010)Google Scholar
  44. 44.
    M. Vitale, C.K. Ryu, W.E. Palke, P.C. Ford, Inorg. Chem. 33, 561 (1994)CrossRefGoogle Scholar
  45. 45.
    A. Vega, J.Y. Saillard, Inorg. Chem. 43, 4012 (2004)CrossRefGoogle Scholar
  46. 46.
    S. Perruchas, C. Tard, X.F. Le Goff, A. Fargues, A. Garcia, S. Khalal, J.Y. Saillard, T. Gacoin, J.P. Boilot, Inorg. Chem. 50, 10682 (2011)CrossRefGoogle Scholar
  47. 47.
    P.D. Harvey, M. Knorr, Macromol. Rapid Commun. 31, 808 (2010)CrossRefGoogle Scholar
  48. 48.
    M. Knorr, F. Guyon, Chapter 3: Luminescent oligomeric and polymeric copper coordination compounds assembled by thioether ligands, in Macromolecules containing metal and metal-like elements, Volume 10, Photophysics and photochemistry of metal-containing polymers, ed. by A.S. Abd-El Aziz, C.E. Carraher, C.U. Pittman, M. Zeldin (John Wiley & Sons, New York, 2010), pp. 89–158CrossRefGoogle Scholar
  49. 49.
    B.S. Thyagarajan, K.C. Majumdar, D.K. Bates, J. Heterocycl. Chem. 12, 59 (1975)CrossRefGoogle Scholar
  50. 50.
    G.M. Sheldrick, Acta Cryst. A64, 112 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shawkat M. Aly
    • 1
  • Abdoulaye Pam
    • 2
  • Abderrahim Khatyr
    • 2
  • Michael Knorr
    • 2
  • Yoann Rousselin
    • 3
  • Marek M. Kubicki
    • 3
  • Jonathan O. Bauer
    • 4
  • Carsten Strohmann
    • 4
  • Pierre D. Harvey
    • 1
  1. 1.Département de chimieUniversité de SherbrookeSherbrookeCanada
  2. 2.Institut UTINAM UMR CNRS 6213, Université de Franche-ComtéBesançonFrance
  3. 3.Institut de Chimie Moléculaire UMR CNRS 6302, Université de BourgogneDijonFrance
  4. 4.Anorganische ChemieTechnische Universität DortmundDortmundGermany

Personalised recommendations