Uranyl Coordination Polymers Incorporating η5-Cyclopentadienyliron-Functionalized η6-Phthalate Metalloligands: Syntheses, Structures and Photophysical Properties

Abstract

The reaction of two η5-cyclopentadienyliron(II)-functionalized terephthalate and phthalate metalloligands, namely [(η5-C5H5)FeII6-1,4-HO2CC6H4CO2H)][(η5-C5H5)FeII6-1,4-HO2CC6H4CO2)][PF6] and [(η5-C5H5)FeII6-1,2-HO2CC6H4CO2H)][(η5-C5H5)FeII6-1,2-HO2CC6H4CO2)][PF6]—hereafter [H2 CpFeTP][HCpFeTP][PF6] and [H2 CpFeP][HCpFeP][PF6], respectively—with [UO2(NO3)2]·6H2O under hydrothermal conditions yielded four new coordination polymers; (1) [(UO2)F(HCpFeTP)(PO4H2)]·2H2O, (2) [(UO2)2(CpFeTP)4]·5H2O, (3) [(UO2)2F3(H2O)(CpFeP)], and (4) [H2 CpFeP][UO2F3]. The use of metalloligands has proven to be a viable route towards the incorporation of a secondary metal center into uranyl bearing materials. Depending upon the protonation state, the iron sandwich metalloligands may vary from zwitterionic neutral or monoanionic coordinating species as observed in compounds 13, or a positively charged species that hydrogen bonds with anionic [UO2F3] chains as observed in 4. Further, the hydrolysis of the charge balancing PF6 anion increases the diversity of UO2 2+ coordinating species by contributing both F and PO4 3− anions (1, 3, 4). The luminescent properties of 14 were also studied and revealed the absence of uranyl emission, suggestive of a possible energy transfer from the uranyl cation to the iron(II) metal center.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    P.A. Giesting, P.C. Burns, Crystallogr. Rev. 12, 205–255 (2006)

    CAS  Article  Google Scholar 

  2. 2.

    K. Wang, J. Chen, Acc. Chem. Res. 44, 531–540 (2011)

    CAS  Article  Google Scholar 

  3. 3.

    M. Ephritikhine, Dalton Trans. 2501–2516 (2006)

  4. 4.

    C.L. Cahill, D.T. de Lill, M. Frisch, CrystEngComm 9, 15–26 (2007)

    CAS  Article  Google Scholar 

  5. 5.

    P.C. Burns, Can. Miner. 43, 1839–1894 (2005)

    CAS  Article  Google Scholar 

  6. 6.

    Z. Liao, G. Li, M. Bi, J. Chen, Inorg. Chem. 47, 4844–4853 (2008)

    CAS  Article  Google Scholar 

  7. 7.

    J.M. Harrowfield, N. Lugan, G.H. Shahverdizadeh, A.A. Soudi, P. Thuéry, Eur. J. Inorg. Chem. 2006, 389–396 (2006)

    Article  Google Scholar 

  8. 8.

    I. Mihalcea, N. Henry, N. Clavier, N. Dacheux, T. Loiseau, Inorg. Chem. 50, 6243–6249 (2011)

    CAS  Article  Google Scholar 

  9. 9.

    P. Thuéry, Inorg. Chem. 52, 435–447 (2013)

    Article  Google Scholar 

  10. 10.

    P. Thuéry, Cryst. Growth Des. 11, 2606–2620 (2011)

    Article  Google Scholar 

  11. 11.

    C.E. Rowland, C.L. Cahill, Inorg. Chem. 49, 6716–6724 (2010)

    CAS  Article  Google Scholar 

  12. 12.

    C.E. Rowland, C.L. Cahill, Inorg. Chem. 49, 8668–8673 (2010)

    CAS  Article  Google Scholar 

  13. 13.

    I. Grenthe, J. Fuger, R.J.M. Konigs, R.J. Lemire, A.B. Muller, C. Nguyen-Trung, H. Wanner, Nuclear Energy Agency, Organization for Economic Co-operation and Development (2004)

  14. 14.

    L.A. Borkowski, C.L. Cahill, Cryst. Growth Des. 6, 2248–2259 (2006)

    CAS  Article  Google Scholar 

  15. 15.

    A.T. Kerr, C.L. Cahill, Cryst. Growth Des. 11, 5634–5641 (2011)

    CAS  Article  Google Scholar 

  16. 16.

    A.D. Nelson, E.V. Alekseev, T.E. Albrecht-Schmitt, R.C. Ewing, J. Solid State Chem. 198, 270–278 (2013)

    CAS  Article  Google Scholar 

  17. 17.

    K.E. Knope, C.L. Cahill, Inorg. Chem. 48, 6845–6851 (2009)

    CAS  Article  Google Scholar 

  18. 18.

    T. Tian, W. Yang, H. Wang, S. Dang, Q. Pan, Z. Sun, Inorg. Chem. 52, 7100–7106 (2013)

    CAS  Article  Google Scholar 

  19. 19.

    M. Frisch, C.L. Cahill, Dalton Trans. 4679–4690 (2006)

  20. 20.

    K.E. Knope, C.L. Cahill, Eur. J. Inorg. Chem. 2010, 1177–1185 (2010)

    Article  Google Scholar 

  21. 21.

    W. Henderson, A.G. Oliver, C.E.F. Rickard, Inorg. Chim. Acta 307, 144–148 (2000)

    CAS  Article  Google Scholar 

  22. 22.

    C. Villiers, P. Thuéry, M. Ephritikhine, Angew. Chem. 120, 5976–5977 (2008)

    Article  Google Scholar 

  23. 23.

    P. Thuery, Inorg. Chem. Commun. 12, 800–803 (2009)

    CAS  Article  Google Scholar 

  24. 24.

    C. Yang, Q. Wang, J. Qi, Y. Ma, S. Yan, G. Yang, P. Cheng, D. Liao, Inorg. Chem. 50, 4006–4015 (2011)

    CAS  Article  Google Scholar 

  25. 25.

    K.C. Szeto, K.O. Kongshaug, S. Jakobsen, M. Tilset, K.P. Lillerud, Dalton Trans. 2054–2060 (2008)

  26. 26.

    K.E. Knope, D.T. de Lill, C.E. Rowland, P.M. Cantos, A. de Bettencourt-Dias, C.L. Cahill, Inorg. Chem. 51, 201–206 (2012)

    CAS  Article  Google Scholar 

  27. 27.

    P.O. Adelani, T.E. Albrecht-Schmitt, Cryst. Growth Des. 11, 4676–4683 (2011)

    CAS  Article  Google Scholar 

  28. 28.

    A.N. Alsobrook, E.V. Alekseev, W. Depmeier, T.E. Albrecht-Schmitt, Cryst. Growth Des. 11, 2358–2367 (2011)

    CAS  Article  Google Scholar 

  29. 29.

    I. Mihalcea, C. Volkringer, N. Henry, T. Loiseau, Inorg. Chem. 51, 9610–9618 (2012)

    CAS  Article  Google Scholar 

  30. 30.

    L.B. Serezhkina, A.V. Vologzhanina, S.A. Novikov, A.A. Korlyukov, V.N. Serezhkin, Crystallogr. Rep. 56, 233–237 (2011)

    CAS  Article  Google Scholar 

  31. 31.

    Z. Yu, Z. Liao, Y. Jiang, G. Li, J. Chen, Chem. Eur. J. 11, 2642–2650 (2005)

    CAS  Article  Google Scholar 

  32. 32.

    Z. Yu, G. Li, Y. Jiang, J. Xu, J. Chen, Dalton Trans. 4219–4220 (2003)

  33. 33.

    P. Thuéry, CrystEngComm 10, 1126–1128 (2008)

    Article  Google Scholar 

  34. 34.

    F.H. Allen, Acta Cryst. B 58, 380–388 (2002)

    Article  Google Scholar 

  35. 35.

    I.J. Bruno, J.C. Cole, P.R. Edgington, M. Kessler, C.F. Macrae, P. McCabe, J. Pearson, R. Taylor, Acta Cryst. B 58, 389–397 (2002)

    Article  Google Scholar 

  36. 36.

    D. Du, J. Qin, C. Sun, X. Wang, S. Zhang, P. Shen, S. Li, Z. Su, Y. Lan, J. Mater. Chem. 22, 19673–19678 (2012)

    CAS  Article  Google Scholar 

  37. 37.

    B. Chen, X. Zhao, A. Putkham, K. Hong, E.B. Lobkovsky, E.J. Hurtado, A.J. Fletcher, K.M. Thomas, J. Am. Chem. Soc. 130, 6411–6423 (2008)

    CAS  Article  Google Scholar 

  38. 38.

    L. DeVries, W. Choe, J. Chem. Cryst. 39, 229–240 (2009)

    CAS  Article  Google Scholar 

  39. 39.

    S.A. Kumalah, K.T. Holman, Inorg. Chem. 48, 6860–6872 (2009)

    CAS  Article  Google Scholar 

  40. 40.

    B.J. Burnett, P.M. Barron, W. Choe, CrystEngComm 14, 3839–3846 (2012)

    CAS  Article  Google Scholar 

  41. 41.

    S.A. Kumalah Robinson, M.L. Mempin, A.J. Cairns, K.T. Holman, J. Am. Chem. Soc. 133, 1634–1637 (2011)

    CAS  Article  Google Scholar 

  42. 42.

    J. Canivet, S. Aguado, Y. Schuurman, D. Farrusseng, J. Am. Chem. Soc. 135, 4195–4198 (2013)

    CAS  Article  Google Scholar 

  43. 43.

    C. Wang, J. Wang, W. Lin, J. Am. Chem. Soc. 134, 19895–19908 (2012)

    CAS  Article  Google Scholar 

  44. 44.

    R. Kitaura, G. Onoyama, H. Sakamoto, R. Matsuda, S. Noro, S. Kitagawa, Angew. Chem. 116, 2738–2741 (2004)

    Article  Google Scholar 

  45. 45.

    K. Oisaki, Q. Li, H. Furukawa, A.U. Czaja, O.M. Yaghi, J. Am. Chem. Soc. 132, 9262–9264 (2010)

    CAS  Article  Google Scholar 

  46. 46.

    I. Goldberg, CrystEngComm 10, 637–645 (2008)

    CAS  Article  Google Scholar 

  47. 47.

    S.R. Halper, L. Do, J.R. Stork, S.M. Cohen, J. Am. Chem. Soc. 128, 15255–15268 (2006)

    CAS  Article  Google Scholar 

  48. 48.

    S.R. Halper, S.M. Cohen, Inorg. Chem. 44, 486–488 (2005)

    CAS  Article  Google Scholar 

  49. 49.

    J.A. Reingold, S. Uk Son, S. Bok Kim, C.A. Dullaghan, M. Oh, P.C. Frake, G.B. Carpenter, D.A. Sweigart, Dalton Trans. 2385–2398 (2006)

  50. 50.

    M. Oh, G.B. Carpenter, D.A. Sweigart, Acc. Chem. Res. 37, 1–11 (2004)

    CAS  Article  Google Scholar 

  51. 51.

    R.E. Berry, P.D. Smith, S.M. Harben, M. Helliwell, D. Collison, D.C. Garner, Chem. Commun. 591–592 (1998)

  52. 52.

    S.-A. Fong, W.T. Yap, J.J. Vittal, W. Henderson, T.S.A. Hor, J.Chem.Soc. Dalton Trans. 1826–1831 (2002)

  53. 53.

    R. Graziani, M. Vidali, U. Casellato, P.A. Vigato, Transit. Metal Chem. 3, 99–103 (1978)

    CAS  Article  Google Scholar 

  54. 54.

    L. Salmon, P. Thuéry, M. Ephritikhine, Polyhedron 22, 2683–2688 (2003)

    CAS  Article  Google Scholar 

  55. 55.

    A.J. Stemmler, J.W. Kampf, V.L. Pecoraro, Angew. Chem. Int. Ed. Engl. 35, 2841–2843 (1996)

    CAS  Article  Google Scholar 

  56. 56.

    P.M. Veitch, J.R. Allan, A.J. Blake, M. Schroder, J.Chem.Soc. Dalton Trans. 2853–2856 (1987)

  57. 57.

    S. Kannan, S.B. Deb, M.G.B. Drew, Inorg. Chim. Acta 10, 2338–2340 (2010)

    Article  Google Scholar 

  58. 58.

    A. Kumar, R. Chauhan, K.C. Molloy, G. Kociok-Köhn, L. Bahadur, N. Singh, Chem. Eur. J. 16, 4307–4314 (2010)

    CAS  Article  Google Scholar 

  59. 59.

    A.N. Nesmeyanov, N.A. Vol’kenau, I.N. Bolesova, Dokl. Akad. Nauk SSSR 175, 606–609 (1967)

    CAS  Google Scholar 

  60. 60.

    A.N. Nesmeyanov, N.A. Vol’kenau, I.N. Bolesova, Dokl. Akad. Nauk SSSR 166, 607–610 (1966)

    CAS  Google Scholar 

  61. 61.

    A.N. Nesmeyanov, N.A. Vol’kenau, I.N. Bolesova, Dokl. Akad. Nauk SSSR 149, 615–618 (1963)

    CAS  Google Scholar 

  62. 62.

    E.I. Sirotkina, A.N. Nesmeyanov, N.A. Vol’kenau, Izv. Akad. Nauk SSSR. Ser. Khim. 1524–1529 (1969)

  63. 63.

    D. Astruc, Tetrahedron 39, 4027–4095 (1983)

    CAS  Article  Google Scholar 

  64. 64.

    A.S. Abd-El-Aziz, S. Bernardin, Coord. Chem. Rev. 203, 219–267 (2000)

    CAS  Article  Google Scholar 

  65. 65.

    APEXII Software Suite, 4-1; Bruker AXS: Madison, WI. (2013)

  66. 66.

    A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Cryst. 26, 343–350 (1993)

    Article  Google Scholar 

  67. 67.

    G.M. Sheldrick, Acta Cryst. A 64, 112–122 (2008)

    CAS  Article  Google Scholar 

  68. 68.

    L.J. Farrugia, J. Appl. Cryst. 32, 837–838 (1999)

    CAS  Article  Google Scholar 

  69. 69.

    D. Palmer, CrystalMaker for Mac OS X, 8.2.2, CrystalMaker Software Limited: Oxfordshire, England, (2009)

  70. 70.

    R.I. Cooper, R.O. Gould, S. Parsons, D.J. Watkin, J. Appl. Cryst. 35, 168 (2002)

    CAS  Article  Google Scholar 

  71. 71.

    JADE V6.1 Materials Data Inc. Livermore, CA, (2002)

  72. 72.

    A.E. Gebala, M.M. Jones, J. Inorg. Nucl. Chem. 31, 771–776 (1969)

    CAS  Article  Google Scholar 

  73. 73.

    N.P. Deifel, K.T. Holman, C.L. Cahill, Chem. Commun. (2008) 6037

  74. 74.

    Y.B. Go, X. Wang, A.J. Jacobson, Inorg. Chem. 46, 6594–6600 (2007)

    CAS  Article  Google Scholar 

  75. 75.

    T. Kuroda-Sowa, M. Munakata, H. Matsuda, S. Akiyama, M. Maekawa, J. Chem. Soc. Dalton Trans. 2201–2208 (1995)

  76. 76.

    M. Munakata, T. Kuroda-Sowa, M. Maekawa, M. Nakamura, S. Akiyama, S. Kitagawa, Inorg. Chem. 33, 1284–1291 (1994)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001089, and also work supported by the National Science Foundation (NSF) under Grant Number DMR-1106266.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Cahill.

Additional information

The authors dedicate this paper to the memory of Prof. Dwight A. Sweigart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1424 kb)

Supplementary material 2 (TXT 168 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kerr, A.T., Kumalah, S.A., Holman, K.T. et al. Uranyl Coordination Polymers Incorporating η5-Cyclopentadienyliron-Functionalized η6-Phthalate Metalloligands: Syntheses, Structures and Photophysical Properties. J Inorg Organomet Polym 24, 128–136 (2014). https://doi.org/10.1007/s10904-013-9980-0

Download citation

Keywords

  • Uranyl
  • Metalloligand
  • Luminescence
  • Hydrolysis
  • Hydrothermal