Advertisement

Uranyl Coordination Polymers Incorporating η5-Cyclopentadienyliron-Functionalized η6-Phthalate Metalloligands: Syntheses, Structures and Photophysical Properties

  • Andrew T. Kerr
  • Sayon A. Kumalah
  • K. T. Holman
  • Ray J. Butcher
  • Christopher L. Cahill
Article

Abstract

The reaction of two η5-cyclopentadienyliron(II)-functionalized terephthalate and phthalate metalloligands, namely [(η5-C5H5)FeII6-1,4-HO2CC6H4CO2H)][(η5-C5H5)FeII6-1,4-HO2CC6H4CO2)][PF6] and [(η5-C5H5)FeII6-1,2-HO2CC6H4CO2H)][(η5-C5H5)FeII6-1,2-HO2CC6H4CO2)][PF6]—hereafter [H2 CpFeTP][HCpFeTP][PF6] and [H2 CpFeP][HCpFeP][PF6], respectively—with [UO2(NO3)2]·6H2O under hydrothermal conditions yielded four new coordination polymers; (1) [(UO2)F(HCpFeTP)(PO4H2)]·2H2O, (2) [(UO2)2(CpFeTP)4]·5H2O, (3) [(UO2)2F3(H2O)(CpFeP)], and (4) [H2 CpFeP][UO2F3]. The use of metalloligands has proven to be a viable route towards the incorporation of a secondary metal center into uranyl bearing materials. Depending upon the protonation state, the iron sandwich metalloligands may vary from zwitterionic neutral or monoanionic coordinating species as observed in compounds 13, or a positively charged species that hydrogen bonds with anionic [UO2F3] chains as observed in 4. Further, the hydrolysis of the charge balancing PF6 anion increases the diversity of UO2 2+ coordinating species by contributing both F and PO4 3− anions (1, 3, 4). The luminescent properties of 14 were also studied and revealed the absence of uranyl emission, suggestive of a possible energy transfer from the uranyl cation to the iron(II) metal center.

Keywords

Uranyl Metalloligand Luminescence Hydrolysis Hydrothermal 

Notes

Acknowledgments

This material is based upon work supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001089, and also work supported by the National Science Foundation (NSF) under Grant Number DMR-1106266.

Supplementary material

10904_2013_9980_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1424 kb)
10904_2013_9980_MOESM2_ESM.txt (167 kb)
Supplementary material 2 (TXT 168 kb)

References

  1. 1.
    P.A. Giesting, P.C. Burns, Crystallogr. Rev. 12, 205–255 (2006)CrossRefGoogle Scholar
  2. 2.
    K. Wang, J. Chen, Acc. Chem. Res. 44, 531–540 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Ephritikhine, Dalton Trans. 2501–2516 (2006)Google Scholar
  4. 4.
    C.L. Cahill, D.T. de Lill, M. Frisch, CrystEngComm 9, 15–26 (2007)CrossRefGoogle Scholar
  5. 5.
    P.C. Burns, Can. Miner. 43, 1839–1894 (2005)CrossRefGoogle Scholar
  6. 6.
    Z. Liao, G. Li, M. Bi, J. Chen, Inorg. Chem. 47, 4844–4853 (2008)CrossRefGoogle Scholar
  7. 7.
    J.M. Harrowfield, N. Lugan, G.H. Shahverdizadeh, A.A. Soudi, P. Thuéry, Eur. J. Inorg. Chem. 2006, 389–396 (2006)CrossRefGoogle Scholar
  8. 8.
    I. Mihalcea, N. Henry, N. Clavier, N. Dacheux, T. Loiseau, Inorg. Chem. 50, 6243–6249 (2011)CrossRefGoogle Scholar
  9. 9.
    P. Thuéry, Inorg. Chem. 52, 435–447 (2013)CrossRefGoogle Scholar
  10. 10.
    P. Thuéry, Cryst. Growth Des. 11, 2606–2620 (2011)CrossRefGoogle Scholar
  11. 11.
    C.E. Rowland, C.L. Cahill, Inorg. Chem. 49, 6716–6724 (2010)CrossRefGoogle Scholar
  12. 12.
    C.E. Rowland, C.L. Cahill, Inorg. Chem. 49, 8668–8673 (2010)CrossRefGoogle Scholar
  13. 13.
    I. Grenthe, J. Fuger, R.J.M. Konigs, R.J. Lemire, A.B. Muller, C. Nguyen-Trung, H. Wanner, Nuclear Energy Agency, Organization for Economic Co-operation and Development (2004)Google Scholar
  14. 14.
    L.A. Borkowski, C.L. Cahill, Cryst. Growth Des. 6, 2248–2259 (2006)CrossRefGoogle Scholar
  15. 15.
    A.T. Kerr, C.L. Cahill, Cryst. Growth Des. 11, 5634–5641 (2011)CrossRefGoogle Scholar
  16. 16.
    A.D. Nelson, E.V. Alekseev, T.E. Albrecht-Schmitt, R.C. Ewing, J. Solid State Chem. 198, 270–278 (2013)CrossRefGoogle Scholar
  17. 17.
    K.E. Knope, C.L. Cahill, Inorg. Chem. 48, 6845–6851 (2009)CrossRefGoogle Scholar
  18. 18.
    T. Tian, W. Yang, H. Wang, S. Dang, Q. Pan, Z. Sun, Inorg. Chem. 52, 7100–7106 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Frisch, C.L. Cahill, Dalton Trans. 4679–4690 (2006)Google Scholar
  20. 20.
    K.E. Knope, C.L. Cahill, Eur. J. Inorg. Chem. 2010, 1177–1185 (2010)CrossRefGoogle Scholar
  21. 21.
    W. Henderson, A.G. Oliver, C.E.F. Rickard, Inorg. Chim. Acta 307, 144–148 (2000)CrossRefGoogle Scholar
  22. 22.
    C. Villiers, P. Thuéry, M. Ephritikhine, Angew. Chem. 120, 5976–5977 (2008)CrossRefGoogle Scholar
  23. 23.
    P. Thuery, Inorg. Chem. Commun. 12, 800–803 (2009)CrossRefGoogle Scholar
  24. 24.
    C. Yang, Q. Wang, J. Qi, Y. Ma, S. Yan, G. Yang, P. Cheng, D. Liao, Inorg. Chem. 50, 4006–4015 (2011)CrossRefGoogle Scholar
  25. 25.
    K.C. Szeto, K.O. Kongshaug, S. Jakobsen, M. Tilset, K.P. Lillerud, Dalton Trans. 2054–2060 (2008)Google Scholar
  26. 26.
    K.E. Knope, D.T. de Lill, C.E. Rowland, P.M. Cantos, A. de Bettencourt-Dias, C.L. Cahill, Inorg. Chem. 51, 201–206 (2012)CrossRefGoogle Scholar
  27. 27.
    P.O. Adelani, T.E. Albrecht-Schmitt, Cryst. Growth Des. 11, 4676–4683 (2011)CrossRefGoogle Scholar
  28. 28.
    A.N. Alsobrook, E.V. Alekseev, W. Depmeier, T.E. Albrecht-Schmitt, Cryst. Growth Des. 11, 2358–2367 (2011)CrossRefGoogle Scholar
  29. 29.
    I. Mihalcea, C. Volkringer, N. Henry, T. Loiseau, Inorg. Chem. 51, 9610–9618 (2012)CrossRefGoogle Scholar
  30. 30.
    L.B. Serezhkina, A.V. Vologzhanina, S.A. Novikov, A.A. Korlyukov, V.N. Serezhkin, Crystallogr. Rep. 56, 233–237 (2011)CrossRefGoogle Scholar
  31. 31.
    Z. Yu, Z. Liao, Y. Jiang, G. Li, J. Chen, Chem. Eur. J. 11, 2642–2650 (2005)CrossRefGoogle Scholar
  32. 32.
    Z. Yu, G. Li, Y. Jiang, J. Xu, J. Chen, Dalton Trans. 4219–4220 (2003)Google Scholar
  33. 33.
    P. Thuéry, CrystEngComm 10, 1126–1128 (2008)CrossRefGoogle Scholar
  34. 34.
    F.H. Allen, Acta Cryst. B 58, 380–388 (2002)CrossRefGoogle Scholar
  35. 35.
    I.J. Bruno, J.C. Cole, P.R. Edgington, M. Kessler, C.F. Macrae, P. McCabe, J. Pearson, R. Taylor, Acta Cryst. B 58, 389–397 (2002)CrossRefGoogle Scholar
  36. 36.
    D. Du, J. Qin, C. Sun, X. Wang, S. Zhang, P. Shen, S. Li, Z. Su, Y. Lan, J. Mater. Chem. 22, 19673–19678 (2012)CrossRefGoogle Scholar
  37. 37.
    B. Chen, X. Zhao, A. Putkham, K. Hong, E.B. Lobkovsky, E.J. Hurtado, A.J. Fletcher, K.M. Thomas, J. Am. Chem. Soc. 130, 6411–6423 (2008)CrossRefGoogle Scholar
  38. 38.
    L. DeVries, W. Choe, J. Chem. Cryst. 39, 229–240 (2009)CrossRefGoogle Scholar
  39. 39.
    S.A. Kumalah, K.T. Holman, Inorg. Chem. 48, 6860–6872 (2009)CrossRefGoogle Scholar
  40. 40.
    B.J. Burnett, P.M. Barron, W. Choe, CrystEngComm 14, 3839–3846 (2012)CrossRefGoogle Scholar
  41. 41.
    S.A. Kumalah Robinson, M.L. Mempin, A.J. Cairns, K.T. Holman, J. Am. Chem. Soc. 133, 1634–1637 (2011)CrossRefGoogle Scholar
  42. 42.
    J. Canivet, S. Aguado, Y. Schuurman, D. Farrusseng, J. Am. Chem. Soc. 135, 4195–4198 (2013)CrossRefGoogle Scholar
  43. 43.
    C. Wang, J. Wang, W. Lin, J. Am. Chem. Soc. 134, 19895–19908 (2012)CrossRefGoogle Scholar
  44. 44.
    R. Kitaura, G. Onoyama, H. Sakamoto, R. Matsuda, S. Noro, S. Kitagawa, Angew. Chem. 116, 2738–2741 (2004)CrossRefGoogle Scholar
  45. 45.
    K. Oisaki, Q. Li, H. Furukawa, A.U. Czaja, O.M. Yaghi, J. Am. Chem. Soc. 132, 9262–9264 (2010)CrossRefGoogle Scholar
  46. 46.
    I. Goldberg, CrystEngComm 10, 637–645 (2008)CrossRefGoogle Scholar
  47. 47.
    S.R. Halper, L. Do, J.R. Stork, S.M. Cohen, J. Am. Chem. Soc. 128, 15255–15268 (2006)CrossRefGoogle Scholar
  48. 48.
    S.R. Halper, S.M. Cohen, Inorg. Chem. 44, 486–488 (2005)CrossRefGoogle Scholar
  49. 49.
    J.A. Reingold, S. Uk Son, S. Bok Kim, C.A. Dullaghan, M. Oh, P.C. Frake, G.B. Carpenter, D.A. Sweigart, Dalton Trans. 2385–2398 (2006)Google Scholar
  50. 50.
    M. Oh, G.B. Carpenter, D.A. Sweigart, Acc. Chem. Res. 37, 1–11 (2004)CrossRefGoogle Scholar
  51. 51.
    R.E. Berry, P.D. Smith, S.M. Harben, M. Helliwell, D. Collison, D.C. Garner, Chem. Commun. 591–592 (1998)Google Scholar
  52. 52.
    S.-A. Fong, W.T. Yap, J.J. Vittal, W. Henderson, T.S.A. Hor, J.Chem.Soc. Dalton Trans. 1826–1831 (2002)Google Scholar
  53. 53.
    R. Graziani, M. Vidali, U. Casellato, P.A. Vigato, Transit. Metal Chem. 3, 99–103 (1978)CrossRefGoogle Scholar
  54. 54.
    L. Salmon, P. Thuéry, M. Ephritikhine, Polyhedron 22, 2683–2688 (2003)CrossRefGoogle Scholar
  55. 55.
    A.J. Stemmler, J.W. Kampf, V.L. Pecoraro, Angew. Chem. Int. Ed. Engl. 35, 2841–2843 (1996)CrossRefGoogle Scholar
  56. 56.
    P.M. Veitch, J.R. Allan, A.J. Blake, M. Schroder, J.Chem.Soc. Dalton Trans. 2853–2856 (1987)Google Scholar
  57. 57.
    S. Kannan, S.B. Deb, M.G.B. Drew, Inorg. Chim. Acta 10, 2338–2340 (2010)CrossRefGoogle Scholar
  58. 58.
    A. Kumar, R. Chauhan, K.C. Molloy, G. Kociok-Köhn, L. Bahadur, N. Singh, Chem. Eur. J. 16, 4307–4314 (2010)CrossRefGoogle Scholar
  59. 59.
    A.N. Nesmeyanov, N.A. Vol’kenau, I.N. Bolesova, Dokl. Akad. Nauk SSSR 175, 606–609 (1967)Google Scholar
  60. 60.
    A.N. Nesmeyanov, N.A. Vol’kenau, I.N. Bolesova, Dokl. Akad. Nauk SSSR 166, 607–610 (1966)Google Scholar
  61. 61.
    A.N. Nesmeyanov, N.A. Vol’kenau, I.N. Bolesova, Dokl. Akad. Nauk SSSR 149, 615–618 (1963)Google Scholar
  62. 62.
    E.I. Sirotkina, A.N. Nesmeyanov, N.A. Vol’kenau, Izv. Akad. Nauk SSSR. Ser. Khim. 1524–1529 (1969)Google Scholar
  63. 63.
    D. Astruc, Tetrahedron 39, 4027–4095 (1983)CrossRefGoogle Scholar
  64. 64.
    A.S. Abd-El-Aziz, S. Bernardin, Coord. Chem. Rev. 203, 219–267 (2000)CrossRefGoogle Scholar
  65. 65.
    APEXII Software Suite, 4-1; Bruker AXS: Madison, WI. (2013)Google Scholar
  66. 66.
    A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Cryst. 26, 343–350 (1993)CrossRefGoogle Scholar
  67. 67.
    G.M. Sheldrick, Acta Cryst. A 64, 112–122 (2008)CrossRefGoogle Scholar
  68. 68.
    L.J. Farrugia, J. Appl. Cryst. 32, 837–838 (1999)CrossRefGoogle Scholar
  69. 69.
    D. Palmer, CrystalMaker for Mac OS X, 8.2.2, CrystalMaker Software Limited: Oxfordshire, England, (2009)Google Scholar
  70. 70.
    R.I. Cooper, R.O. Gould, S. Parsons, D.J. Watkin, J. Appl. Cryst. 35, 168 (2002)CrossRefGoogle Scholar
  71. 71.
    JADE V6.1 Materials Data Inc. Livermore, CA, (2002)Google Scholar
  72. 72.
    A.E. Gebala, M.M. Jones, J. Inorg. Nucl. Chem. 31, 771–776 (1969)CrossRefGoogle Scholar
  73. 73.
    N.P. Deifel, K.T. Holman, C.L. Cahill, Chem. Commun. (2008) 6037Google Scholar
  74. 74.
    Y.B. Go, X. Wang, A.J. Jacobson, Inorg. Chem. 46, 6594–6600 (2007)CrossRefGoogle Scholar
  75. 75.
    T. Kuroda-Sowa, M. Munakata, H. Matsuda, S. Akiyama, M. Maekawa, J. Chem. Soc. Dalton Trans. 2201–2208 (1995)Google Scholar
  76. 76.
    M. Munakata, T. Kuroda-Sowa, M. Maekawa, M. Nakamura, S. Akiyama, S. Kitagawa, Inorg. Chem. 33, 1284–1291 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Andrew T. Kerr
    • 1
  • Sayon A. Kumalah
    • 2
  • K. T. Holman
    • 2
  • Ray J. Butcher
    • 3
  • Christopher L. Cahill
    • 1
  1. 1.Department of ChemistryThe George Washington UniversityWashingtonUSA
  2. 2.Department of ChemistryGeorgetown UniversityWashingtonUSA
  3. 3.Department of ChemistryHoward UniversityWashingtonUSA

Personalised recommendations