Skip to main content
Log in

Structural Variations in Coordination Polymers of Sodium and Cesium Dicarboxylates

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The coordination polymer {[Na2L(μ-H2O)(H2O)3]·H2O} n (1) derived from 2,2′-(phenylmethylidene-bis(3,5-methyl-2-phenyleneoxy)] diacetic acid (H2 L) has repeat units comprising of hexa-coordinate diaqua-bridged dinuclear sodium complex ions. These units are connected through intervening mononuclear complex parts having penta-coordinated sodium ions. The sodium ions adopt repeated hexameric chair-like arrangement in the polymer. The cesium salt of H2 L namely [Cs(HL)(μ-H2O)(H2O)] n (2) is a coordination polymer. In this case one acid group of the ligand is deprotonated and 2 form self-assembly by intermolecular hydrogen bonds between the free carboxylic acid groups. The fluoro-substituted ligand 2,2′-(2-fluorophenylmethyledene-bis(3,5-methyl-2-phenyleneoxy)] diacetic acid (H 2 L f ) forms disodium salt with a composition [{Na2Lf(μ-H2O)(H2O)3}·H2O] n (3); which is a two dimensional coordination polymer. On the other hand the corresponding cesium salt of H 2 L f has a composition [{(H2O)Cs(μ-H2O)(μ-Lf)Cs(H2O)2}] (4); which is also a 2-D coordination polymer. The cesium ions are six or nine coordinate in the polymer and the coordination polymer possesses unusual Cs···F–C coordination bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E. Weiss, Angew. Chem. Int. Ed. Eng. 32, 1501–1523 (1993)

    Article  Google Scholar 

  2. R.S. Moorhouse, G.J. Moxey, F. Ortu, T.J. Reade, W. Lewis, A.J. Blake, D.L. Kays, Inorg. Chem. 52, 2678–2683 (2013)

    Article  CAS  Google Scholar 

  3. K.M. Fromm, Coord. Chem. Rev. 252, 856–885 (2008)

    Article  CAS  Google Scholar 

  4. C.N.R. Rao, S. Natarajan, R. Vaidhyanathan, Angew. Chem. Int. Ed. Eng. 12, 1466–1496 (2004)

    Article  Google Scholar 

  5. J.Y. Wu, M.T. Ding, Y.S. Wen, Y.H. Liu, K.L. Lu, Chem. Eur. J. 14, 3604–3614 (2009)

    Article  Google Scholar 

  6. A. Krief, A. Kremer, Chem. Rev. 110, 4772–4819 (2010)

    Article  CAS  Google Scholar 

  7. E. Katsoulkou, K.F. Konidaris, A. Terzis, C.P. Raptopoulou, S.P. Perleps, E. Manessi-Zoupa, C.E. Kostakis, Polyhedron 30, 397–404 (2011)

    Article  Google Scholar 

  8. G. Peng, L. Ma, J. Cai, L. Liang, D. Hong, G.E. Kostakis, Cryst. Growth Des. 11, 2485–2492 (2011)

    Article  CAS  Google Scholar 

  9. R. Vaidhyanathan, S. Natarajan, C.N.R. Rao, J. Solid State Chem. 162, 150–157 (2001)

    Article  CAS  Google Scholar 

  10. S.C. Chen, Z.H. Zhang, Y.S. Zhou, W.Y. Zhou, Y.Z. Li, M.Y. He, Q. Chen, M. Du, Cryst. Growth Des. 11, 4190–4197 (2011)

    Article  CAS  Google Scholar 

  11. G. Swiderski, S. Wojtulewski, M. Kalinowska, R. Swislocka, W. Lewandowski, J. Mol. Struct. 993, 448–458 (2011)

    Article  CAS  Google Scholar 

  12. A. Hazra, S. Gupta, S. Roy, T.N. Mandal, K. Das, S. Konar, A. Jana, S. Ray, R.J. Butcher, S.K. Kar, Polyhedron 30, 187–194 (2011)

    Article  CAS  Google Scholar 

  13. S.M. Humphrey, R.A. Mole, R.I. Thompson, P.T. Wood, Inorg. Chem. 49, 3441–3448 (2010)

    Article  CAS  Google Scholar 

  14. B. Murugesapandian, P.W. Roesky, Dalton Trans. 39, 9598–9603 (2010)

    Article  CAS  Google Scholar 

  15. K. Rosenlehner, B. Schade, C. Boettcher, C.M. Jaeger, T. Clark, F.W. Heinemann, A. Hirsch, Chem. Eur. J. 16, 9544–9554 (2010)

    Article  CAS  Google Scholar 

  16. O. Zech, M. Kellermeier, S. Thomaier, E. Maurer, R. Klein, C. Schreiner, W. Kunz, Chem. Eur. J. 15, 1341–1345 (2009)

    Article  CAS  Google Scholar 

  17. J.Y. Wu, M.T. Ding, Y.S. Wen, Y.H. Liu, K.L. Lu, Chem. Eur. J. 15, 3604–3614 (2009)

    Article  CAS  Google Scholar 

  18. D. Huang, X. Zhang, C. Ma, H. Chen, C. Chen, Q. Liu, C. Zhang, D. Liao, L. Li, Dalton Trans. 6, 680–688 (2007)

    Article  Google Scholar 

  19. G.S. Nichol, W. Clegg, Polyhedron 25, 1043–1056 (2006)

    Article  CAS  Google Scholar 

  20. W. Huang, X.K. Xie, K. Cui, S.H. Gou, Y.Z. Li, Inorg. Chim. Acta 358, 875–884 (2005)

    Article  CAS  Google Scholar 

  21. H. Deka, R. Sarma, J.B. Baruah, J. Inorg. Organomet. Polym. Mater. 21, 384–390 (2011)

    Article  CAS  Google Scholar 

  22. S. Santra, B. Das, J.B. Baruah, J. Chem. Crystallogr. 41, 1981–1987 (2011)

    Article  CAS  Google Scholar 

  23. D. S. Sagatys, C. Dahlgren, G. Smith, R. C. Bott, J. M. White, Dalton Trans. 3404–3410 (2000)

  24. D. Kalita, J.B. Baruah, J. Chem. Sci. 125, 267–273 (2013)

    Article  CAS  Google Scholar 

  25. B. Nath, J.B. Baruah, Dalton Trans. 41, 7115–7126 (2012)

    Article  CAS  Google Scholar 

  26. B. Nath, D. Kalita, J.B. Baruah, J. Coord. Chem. 64, 2545–2553 (2011)

    Article  CAS  Google Scholar 

  27. Z.-B. Zheng, R.-T. Wu, J.-K. Li, Y.-F. Sun, Y.-F. Han, J. Mol. Struct. 964, 109–118 (2010)

    Article  CAS  Google Scholar 

  28. D.C. Luehrs, K. Bowman-James, J. Mol. Struct. 321, 251–254 (1994)

    Article  CAS  Google Scholar 

  29. J.A. Kaduk, Acta Crystallogr. 56B, 474–485 (2000)

    Article  Google Scholar 

  30. D.D. Wu, T.C.W. Mak, Struct. Chem. 7, 91–101 (1996)

    Article  CAS  Google Scholar 

  31. L. Torun, T.W. Robison, J. Krzykawski, D.W. Purkiss, R.A. Bartsch, Tetrahedron 61, 8345–8350 (2005)

    Article  CAS  Google Scholar 

  32. A. Karmakar, J.B. Baruah, R. Boomi Shankar, CrystEngComm 11, 832–840 (2009)

    Article  CAS  Google Scholar 

  33. H. Plenio, ChemBioChem 5, 650–655 (2004)

    Article  CAS  Google Scholar 

  34. H. Takemura, N. Kon, M. Kotoku, S. Nakashima, K. Otsuka, M. Yasutake, T. Shinmyozu, T. Inazu, J. Org. Chem. 66, 2778–2783 (2001)

    Article  CAS  Google Scholar 

  35. H. Takemura, S. Nakashima, N. Kon, M. Yasutake, T. Shinmyozu, T. Inazu, J. Am. Chem. Soc. 123, 9293–9298 (2001)

    Article  CAS  Google Scholar 

  36. H. Takemura, T. Iwanaga, T. Shinmyozu, Tetrahedron Lett. 47, 8989–8991 (2006)

    Article  CAS  Google Scholar 

  37. T. Katagiri, M. Duan, M. Mukae, K. Uneyama, J. Fluor. 120, 165–172 (2003)

    Article  CAS  Google Scholar 

  38. T. Katagiri, M. Duan, M. Mukae, K. Uneyama, J. Fluor. Chem. 132, 587–595 (2011)

    Article  Google Scholar 

  39. H. Plenio, R. Diodone, Angew. Chem. Int. Ed. Eng. 33, 2175–2177 (1994)

    Article  Google Scholar 

  40. H. Plenio, Chem. Rev. 97, 3363–3384 (1997)

    Article  CAS  Google Scholar 

  41. H. Plenio, R. Diodone, J. Am. Chem. Soc. 118, 356–367 (1996)

    Article  CAS  Google Scholar 

  42. H. Takemura, N. Kon, M. Yasutake, H. Kariyazono, T. Shinmyozu, T. Inazu, Angew. Chem. Int. Ed. Eng. 38, 959–961 (1999)

    Article  CAS  Google Scholar 

  43. H. Takemura, H. Kariyazono, M. Yasutake, N. Kon, K. Tani, K. Sako, T. Shinmyozu, T. Inazu, Eur. J. Org. Chem. 141–148 (2000)

Download references

Acknowledgments

The authors thank Council of Scientific and Industrial Research, New-Delhi, India, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jubaraj B. Baruah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10904_2013_9963_MOESM1_ESM.doc

Supplementary material 1 (DOC 1009 kb) The 1H NMR, 19F NMR spectra of the ligands and metal complexes, IR and theromograms of the complexes, various bond parameters and hydrogen bond parameters in tabular form are available

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nath, B., Baruah, J.B. Structural Variations in Coordination Polymers of Sodium and Cesium Dicarboxylates. J Inorg Organomet Polym 24, 381–387 (2014). https://doi.org/10.1007/s10904-013-9963-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-013-9963-1

Keywords

Navigation