Platinum Phosphinito Catalysts for Nitrile Hydration

  • Spring Melody M. Knapp
  • Tobias J. Sherbow
  • Takiya J. Ahmed
  • Indre Thiel
  • Lev N. Zakharov
  • J. Jerrick Juliette
  • David R. Tyler
Article

Abstract

The reaction of PEt2OH with K2PtCl4 yields [PtCl{(PEt2O)2H}]2 (2). The X-ray crystal structure of 2 shows that the two chloride ligands bridge the two Pt atoms. The structure is unusual in that the PtCl2Pt unit is bent, which is the first example of a platinum phosphinito chloride-bridged dimer that is bent. Dimer 2 is a poor catalyst for the hydration of acetonitrile (and presumably other nitriles). Likewise, the monomeric catalyst that results from the reaction of 2 with sodium hydroxide is not a good hydration catalyst. In an attempt to form a more reactive monomeric catalyst, PtCl(PMe2OH){(PMe2O)2H} (1) was reacted with sodium hydroxide. This reaction resulted in the formation of two species, tentatively characterized as Na[PtCl(PMe2O){(PMe2O)2H}] (5) and Na[PtCl(OH){(PMe2O)2H}] (6). Complexes 5 and 6 could not be separated. However, the mixture of the two complexes quickly hydrated acetonitrile. The catalyst mixture of 5 and 6 was efficiently poisoned by cyanide, which prevented its use as a catalyst for the hydration of cyanohydrins.

Keywords

Nitrile hydration Platinum catalysts Phosphinito ligands Reaction mechanism 195Pt NMR spectroscopy 

Supplementary material

10904_2013_9957_MOESM1_ESM.docx (95 kb)
Supplementary material 1 (DOCX 94 kb)

References

  1. 1.
    T. Ghaffar, A.W. Parkins, Tetrahedron Lett. 36, 8657 (1995)CrossRefGoogle Scholar
  2. 2.
    T. Ghaffar, A.W. Parkins, J. Mol. Catal. A 160, 249 (2000)CrossRefGoogle Scholar
  3. 3.
    X. Jiang, A.J. Minnaard, B.L. Feringa, J.G. de Vries, J. Org. Chem. 69, 2327 (2004)CrossRefGoogle Scholar
  4. 4.
    V.Y. Kukushkin, A.J.L. Pombeiro, Inorg. Chim. Acta 358, 1 (2005)CrossRefGoogle Scholar
  5. 5.
    T.J. Ahmed, S.M.M. Knapp, D.R. Tyler, Coord. Chem. Rev. 255, 949 (2011)CrossRefGoogle Scholar
  6. 6.
    R. García-Álvarez, P. Crochet, V. Cadierno, Green Chem. 15, 46 (2013)CrossRefGoogle Scholar
  7. 7.
    K.L. Breno, M.D. Pluth, D.R. Tyler, Organometallics 22, 1203 (2003)CrossRefGoogle Scholar
  8. 8.
    C.M. Jensen, W.C. Trogler, J. Am. Chem. Soc. 108, 723 (1986)CrossRefGoogle Scholar
  9. 9.
    M.G. Crestani, A. Arévalo, J.J. García, Adv. Synth. Catal. 348, 732 (2006)CrossRefGoogle Scholar
  10. 10.
    S.M.M. Knapp, T.J. Sherbow, R.B. Yelle, L.N. Zakharov, J.J. Juliette, D.R. Tyler, Organometallics 32, 824 (2013)CrossRefGoogle Scholar
  11. 11.
    T.J. Ahmed, B.R. Fox, S.M.M. Knapp, R.B. Yelle, J.J. Juliette, D.R. Tyler, Inorg. Chem. 48, 7828 (2009)CrossRefGoogle Scholar
  12. 12.
    Cambridge Structural Database System, ConQuest Version 1.15 (Cambridge Crystallographic Data Centre, Cambridge, UK, 2013)Google Scholar
  13. 13.
    K.M.A. Malik, P.D. Newman, Dalton Trans. 3516 (2003)Google Scholar
  14. 14.
    A.W. Kaspi, I. Goldberg, A. Vigalok, J. Am. Chem. Soc. 132, 10626 (2010)CrossRefGoogle Scholar
  15. 15.
    G. Aullón, G. Ujaque, A. Lledós, S. Alvarez, P. Alemany, Inorg. Chem. 37, 804 (1998)CrossRefGoogle Scholar
  16. 16.
    P. Bergamini, V. Bertolasi, M. Cattabriga, V. Ferretti, U. Loprieno, N. Mantovani, L. Marvelli, Eur. J. Inorg. Chem. 2003, 918 (2003)CrossRefGoogle Scholar
  17. 17.
    T. Achard, L. Giordano, A. Tenaglia, Y. Gimbert, G. Buono, Organometallics 29, 3936 (2010)CrossRefGoogle Scholar
  18. 18.
    R. Miller, J. Org. Chem. 24, 2013 (1959)CrossRefGoogle Scholar
  19. 19.
    B.M. Still, P.G.A. Kumar, J.R. Aldrich-Wright, W.S. Price, Chem. Soc. Rev. 36, 665 (2007)CrossRefGoogle Scholar
  20. 20.
    S.M.M. Knapp, T.J. Sherbow, J.J. Juliette, D.R. Tyler, Organometallics 31, 2941 (2012)CrossRefGoogle Scholar
  21. 21.
    S.M.M. Knapp, T.J. Sherbow, R.B. Yelle, J.J. Juliette, D.R. Tyler, Organometallics 32, 3744 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Jammot, R. Pascal, A. Commeyras, Tetrahedron Lett. 30, 563 (1989)CrossRefGoogle Scholar
  23. 23.
    J. Jammot, R. Pascal, A. Commeyras, J. Chem. Soc. Perkin Trans. 2, 157 (1990)CrossRefGoogle Scholar
  24. 24.
    M. North, A.W. Parkins, A.N. Shariff, Tetrahedron Lett. 45, 7625 (2004)CrossRefGoogle Scholar
  25. 25.
    H.R. Hays, J. Org. Chem. 33, 3690 (1968)CrossRefGoogle Scholar
  26. 26.
    G.M. Sheldrick, Bruker/Siemens Area Detector Absorption Correction Program (Bruker AXS Inc., Madison, 1998)Google Scholar
  27. 27.
    SHELXTL-6.10 Program for Structure Solution, Refinement, and Presentation (Bruker AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA, n.d.)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Spring Melody M. Knapp
    • 1
  • Tobias J. Sherbow
    • 1
  • Takiya J. Ahmed
    • 1
  • Indre Thiel
    • 1
  • Lev N. Zakharov
    • 1
  • J. Jerrick Juliette
    • 2
  • David R. Tyler
    • 1
  1. 1.Department of ChemistryUniversity of OregonEugeneUSA
  2. 2.Dow Advanced Materials-Performance MonomersThe Dow Chemical CompanyDeer ParkUSA

Personalised recommendations