PdCl2–Polyaniline Composite for CO Detection Applications: Electrical and Optical Response

  • Isam M. Arafa
  • Hassan M. El-Ghanem
  • Khetam A. Bani-Doumi
Article

Abstract

Different mass ratios of PdCl2 were incorporated into polyaniline emeraldine base (PdCl2–PANI) by sonication in acetonitrile. The PdII-doped PANI composites readily interact with CO gas at ambient conditions (1 atm, 27 °C) resulting in the reduction of PdII ions into metallic Pd0 and the release of HCl to afford Pd0–PANI·HCl. The dramatic structural changes associated with CO exposure were examined by different spectroscopic (UV–Visible, FT-IR), powder X-ray diffraction (P-XRD) and electrical conductivity (DC) techniques. The P-XRD data shows that the resulting nano-scale metallic Pd0 clusters (~10–15 nm) remain tightly bound to the PANI chains. The observed chemical transformation of PdCl2–PANI into Pd0–PANI·HCl as a function of exposure to CO gas was exploited to monitor this poisonous gas in CO/air mixture; the optical and DC electrical response functions were examined in solution and solid state, respectively. The DC electrical response signal is relatively ten-fold more sensitive to CO exposure (% Selectrical = 471–496 %) compared to the corresponding optical response (%Soptical at 460 nm = 40–51 %). This responsive action demonstrates that PdCl2–PANI composite can be employed as a feasible low-cost solid-state CO detecting material in chemical sensor devices.

Keywords

CO sensor Palladium–polyaniline Palladium carbonyl Electric-optical response detection 

References

  1. 1.
    B. Adhikari, S. Majumdar, Prog. Polym. Sci. 29, 699–766 (2004)CrossRefGoogle Scholar
  2. 2.
    J. Mizuguchi, T. Imoda, H. Takahashi, H. Yamakami, Dyes Pigment 68, 47–52 (2006)CrossRefGoogle Scholar
  3. 3.
    S. Radhaskrishnan, S.D. Deshpande, Sensors 2, 185–194 (2002)CrossRefGoogle Scholar
  4. 4.
    K.C. Persaud, Mater. Today 8(4), 38–44 (2005)Google Scholar
  5. 5.
    F. Zee, J.W. Judy, Sens. Actuators, B 72, 120–128 (2001)CrossRefGoogle Scholar
  6. 6.
    H. Bai, G. Shi, Gas Sensors 7, 267–307 (2007)CrossRefGoogle Scholar
  7. 7.
    S. Brady, K.T. Lau, W. Megill, G.G. Wallace, D. Diamond, Synth. Met. 154, 25–28 (2005)CrossRefGoogle Scholar
  8. 8.
    P.P. Sengupta, S. Barik, B. Adhikari, Mater. Manuf. Process. 21(3), 263–270 (2006)CrossRefGoogle Scholar
  9. 9.
    D. Nicolas-Debarnot, F. Poncin-Epaillard, Anal. Chim. Acta 475, 1–15 (2003)CrossRefGoogle Scholar
  10. 10.
    D. Xie, Y. Jiang, W. Pan, D. Li, Z. Wu, Y. Li, Sens. Actuators B 81, 158–164 (2002)CrossRefGoogle Scholar
  11. 11.
    C. Malagu, M.C. Carotta, S. Gherardi, V. Guidi, B. Vendemiati, G. Martinelli, Sens. Actuators B 108, 70–74 (2005)CrossRefGoogle Scholar
  12. 12.
    N.M. Shaalan, T. Yamazaki, T. Kikuta, Mater. Chem. Phys. 127(1–2), 143–150 (2011)CrossRefGoogle Scholar
  13. 13.
    A. Salehi, D.J. Kalantari, Sens. Actuators B 122(1), 69–74 (2007)CrossRefGoogle Scholar
  14. 14.
    I.J. Kim, S.D. Han, C.H. Han, J. Gwak, H.D. Lee, J.S. Wang, Sensors 6, 526–535 (2006)CrossRefGoogle Scholar
  15. 15.
    G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Sensors 10, 5469–5502 (2010)CrossRefGoogle Scholar
  16. 16.
    Y. Wang, J.T.W. Yeow, J. Sensors 2009, 1–24 (2009)Google Scholar
  17. 17.
    A. Dubbe, Sens. Actuators B 88, 138–148 (2003)CrossRefGoogle Scholar
  18. 18.
    Y. Shimizu, M. Egashira, MRS Bull. 24, 18–24 (1999)Google Scholar
  19. 19.
    S.L. Schiavo, P. Piraino, A. Bonavita, G. Micali, G. Rizzo, G. Neri, Sens. Actuators B 129(2), 772–778 (2008)CrossRefGoogle Scholar
  20. 20.
    M. Hübner, C.E. Simion, A. Haensch, N. Barsan, U. Weimar, Sens. Actuators B 151(1), 103–106 (2010)CrossRefGoogle Scholar
  21. 21.
    K. Weissermal, H.-J. Arpe, Industrial Organic Chemistry, 4th edn. (Wiley-VCH, Weinheim, 2003), pp. 15–52CrossRefGoogle Scholar
  22. 22.
    S. Watcharaphalakorn, L. Ruangchuay, D. Chotpattananont, A. Sirivat, J. Schwank, Polym. Int. 54, 1126–1133 (2005)CrossRefGoogle Scholar
  23. 23.
    B.W. Koo, C.K. Song, C. Kim, Sens. Actuators B 77, 432–436 (2001)CrossRefGoogle Scholar
  24. 24.
    Y. Wanna, N. Srisukhumbowornchai, A. Tuantranont, A. Wisitsoraat, N. Thavarungkul, P. Singjai, J. Nanosci. Nanotechnol. 6(12), 3893–3896 (2006)CrossRefGoogle Scholar
  25. 25.
    M.K. Ram, O. Yavuz, V. Lahsangah, M. Aldissi, Sens. Actuators B 106, 750–757 (2005)CrossRefGoogle Scholar
  26. 26.
    V. Dixit, S.C.K. Misra, B.S. Sharma, Sens. Actuators B 104, 90–93 (2005)CrossRefGoogle Scholar
  27. 27.
    N. Densakulprasert, L. Wannatong, D. Chotpattananont, P. Hiamtup, A. Sirivat, J. Schwank, Mater. Sci. Eng. B 117, 276–282 (2005)CrossRefGoogle Scholar
  28. 28.
    S.C.K. Misra, P. Mathur, B.K. Srivastava, Sens. Actuators A 114, 30–35 (2004)CrossRefGoogle Scholar
  29. 29.
    J. Huang, S. Virji, B.H. Weiller, R.B. Kaner, Chem. Eur. J. 10, 1315–1319 (2004)CrossRefGoogle Scholar
  30. 30.
    S.X. Xing, C. Zhao, S.Y. Jing, Y. Wu, Z.C. Wang, Eur. Polym. J. 42, 2730–2735 (2006)CrossRefGoogle Scholar
  31. 31.
    N.N. Greenwood, A. Earnshaw, Chemistry of the Elements (Butterworth–Heinemann Ltd, Oxford, 1995), pp. 306–310Google Scholar
  32. 32.
    L. Torsi, M. Pezzuto, P. Siciliano, R. Rella, L. Sabbatini, L. Valli, P.G. Zambonin, Sens. Actuators B 48, 362–367 (1998)CrossRefGoogle Scholar
  33. 33.
    M.S. Silverstein, H.W. Tai, A. Sergienko, Y.L. Lumelsky, S. Pavlovsky, Polymer 46, 6682–6694 (2005)CrossRefGoogle Scholar
  34. 34.
    S. Virji, J.D. Fowler, C.O. Baker, J.X. Huang, R.B. Kaner, B.H. Weiller, Small 1, 624–627 (2005)CrossRefGoogle Scholar
  35. 35.
    S. Sharma, C. Nirkhe, S. Pethkar, A.A. Athawale, Sens. Actuators B 85, 131–136 (2002)CrossRefGoogle Scholar
  36. 36.
    Y.C. Liu, B.J. Hwang, W.C. Hsu, J. Solid State Electrochem. 6, 351–356 (2002)CrossRefGoogle Scholar
  37. 37.
    J.Z. Wang, I. Matsubara, N. Murayama, S. Woosuck, N. Izu, Thin Solid Films 514, 329–333 (2006)CrossRefGoogle Scholar
  38. 38.
    N. Parvatikar, S. Jain, S.V. Bhoraskar, M. Prasad, J. Appl. Polym. Sci. 102, 5533–5537 (2006)CrossRefGoogle Scholar
  39. 39.
    A.Z. Sadek, W. Wlodarski, K. Shin, R.B. Kaner, K. Kalantar-zadeh, Nanotechnology 17, 4488–4492 (2006)CrossRefGoogle Scholar
  40. 40.
    O.P. Dimitriev, Macromolecules 37, 3388–3395 (2004)CrossRefGoogle Scholar
  41. 41.
    D. Saio, T. Amaya, T. Hirao, J. Inorg. Organomet. Polym. Mater. 19(1), 79–84 (2009)CrossRefGoogle Scholar
  42. 42.
    L. Li, G. Yan, J. Wu, X. Yu, Q. Guo, Z. Ma, Z. Huang, J. Polym. Res. 16(4), 421–426 (2009)CrossRefGoogle Scholar
  43. 43.
    A.A. Athawale, S.V. Bhagwat, P.P. Katre, Sens. Actuators B 114(1), 263–267 (2006)CrossRefGoogle Scholar
  44. 44.
    K. Mallick, M. Witcomb, M. Scurrell, Platin. Met. Rev. 51(1), 3–15 (2007)CrossRefGoogle Scholar
  45. 45.
    T. Moriuchi, T. Hirao Acc, Chem. Res. 45(3), 347–360 (2012)CrossRefGoogle Scholar
  46. 46.
    M. Higuchi, D. Imoda, T. Hirao, Macromolecules 29(25), 8277–8279 (1996)CrossRefGoogle Scholar
  47. 47.
    T. Amaya, D. Saio, T. Hirao, Macromol. Symp. 270(1), 88–94 (2008)CrossRefGoogle Scholar
  48. 48.
    T. Moriuchi, S. Bandoh, M. Miyaishi, T. Hirao, Eur. J. Inorg. Chem. 3, 651–657 (2001)CrossRefGoogle Scholar
  49. 49.
    N. Gospodinova, L. Terlemezyan, Prog. Polym. Sci. 23, 1443–1484 (1998)CrossRefGoogle Scholar
  50. 50.
    T. Okabayashi, T. Yamamoto, E.Y. Okabayashi, M. Tanimoto, J. Phys. Chem. A 115(10), 1869–1877 (2011)CrossRefGoogle Scholar
  51. 51.
    Y. Hammam, H.M. El-Ghanem, I.M. Arafa, M.R. Said, I. Abo-Aljarayesh, Polym. Int. 56, 376–380 (2007)CrossRefGoogle Scholar
  52. 52.
    Y. Wan, H. Wang, Q. Zhao, M. Klingstedt, O. Terasaki, D. Zhao, J. Am. Chem. Soc. 131, 4541–4550 (2009)CrossRefGoogle Scholar
  53. 53.
    X. Zhou, Y. Barshad, E. Gulari, Chem. Eng. Sci. 41(5), 1277–1284 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Isam M. Arafa
    • 1
  • Hassan M. El-Ghanem
    • 2
  • Khetam A. Bani-Doumi
    • 1
    • 3
  1. 1.Department of Chemistry, Faculty of Science and ArtsJordan University of Science and TechnologyIrbidJordan
  2. 2.Department of Physics, Faculty of Science and ArtsJordan University of Science and TechnologyIrbidJordan
  3. 3.College of ScienceUniversity of Ha`ilHa`ilSaudi Arabia

Personalised recommendations