New host–guest supramolecular coordination polymers based on [(Me3Sn)3Fe(CN)6]n with alkali metal iodides and their applications as electrode materials in batteries

Article

Abstract

The metal iodides reduce partially the host coordination polymer of the type \( ^{ 3}_{\infty } \left[ {\left( {{\text{Me}}_{ 3} {\text{Sn}}} \right)_{ 3} {\text{Fe}}\left( {\text{CN}} \right)_{ 6} } \right] \), I, to give new host–guest supramolecular coordination polymers (SCP). The physical and chemical characteristics of the new products were studied by elemental analyses, X-ray powder diffraction, IR, UV/Vis, and solid state NMR spectra. The host–guest SCP are [Mx(Me3Sn)3Fe(1–x)IIIFexII(CN)6]n M = Li+·2H2O, 1; Li+, 2; Na+, 3; K+, 4; Cu+, 5, [Li(Me3Sn)3FeII(CN)6]n, 6 and [(LiDEE)0.9(Me3Sn)3Feo.1IIIFeo.9II(CN)6]n, 7. The stoichiometry and nature of the guest depend on the type of the metal iodide and the reaction conditions. The polymeric nature of these SCP is due to the presence of trigonal bipyramidal configured structure which bridges between the single d-transition metal ions. The host–guest SCP containing the Li ions have been tested as electrodes to construct four different lithium-ion batteries.

Keywords

Supramolecular coordination polymers Organotin polymers Alkali metals Host–guest polymers Lithium batteries 

References

  1. 1.
    R. Uson, J. Fornies, M.A. Uson, E. Lalinde, J. Organomet. Chem. 185, 359–366 (1980)CrossRefGoogle Scholar
  2. 2.
    T. Niu, J. Lu, X. Wang, J.D. Krop, A.J. Jacobson, Inorg. Chem. 37, 5324–5328 (1998)CrossRefGoogle Scholar
  3. 3.
    J. Lu, W.T.A. Harrison, A.J. Jacobson, Inorg. Chem. 35, 4271–4273 (1996)CrossRefGoogle Scholar
  4. 4.
    K. Yűnlű, N. Höck, R.D. Fischer, Angew. Chem. Int. Ed. Engl. 24, 879–881 (1985)CrossRefGoogle Scholar
  5. 5.
    S. Eller, R.D. Fischer, Inorg. Chem. 29, 1289–1290 (1990)CrossRefGoogle Scholar
  6. 6.
    U. Behrens, A.K. Brimah, T.M. Soliman, R.D. Fischer, D.C. Apperley, N.A. Davis, R.K. Harris, Organometallics 11, 1718–1726 (1992)CrossRefGoogle Scholar
  7. 7.
    S. El-din, H. Etaiw, A.M. Ibrahim, J. Organomet. Chem. 456, 229–234 (1993)CrossRefGoogle Scholar
  8. 8.
    B.F. Abrahams, B.F. Hoskins, R. Robson, J. Am. Chem. Soc. 113, 3606 (1991)CrossRefGoogle Scholar
  9. 9.
    S. Eller, M. Adam, R.D. Fischer, Angew. Chem. 102, 1157–1159 (1990)Google Scholar
  10. 10.
    S. Eller, M. Adam, R.D. Fischer, Angew. Chem. Int. Ed. Engl. 29, 1126–1128 (1990)Google Scholar
  11. 11.
    M.A. Ibrahim, S.E.H. Etaiw, T.M. Soliman, J. Organomet. Chem. 430, 87–91 (1992)CrossRefGoogle Scholar
  12. 12.
    M. Hassanein, S.E.H. Etaiw, Eur. Polym. J. 29, 47–48 (1993)CrossRefGoogle Scholar
  13. 13.
    M.Sh. Ibrahim, Trans. Met. Chem. 25, 695–699 (2000)CrossRefGoogle Scholar
  14. 14.
    M.A. Ibrahim, T.M. Soliman, S.E.H. Etaiw, R.D. Fischer, J. Organomet. Chem. 468, 93–98 (1994)CrossRefGoogle Scholar
  15. 15.
    S.E.H. Etaiw, M.Sh. Ibrahim, D.M. Abd El-Aziz, J. Mater. Sci. 45, 2474–2483 (2010)CrossRefGoogle Scholar
  16. 16.
    S.E.H. Etaiw, A.H. Warida, J. Inorg. Organomet. Polym. 20, 636–641 (2010)CrossRefGoogle Scholar
  17. 17.
    S.E.H. Etaiw, A.H. Warida, J. Appl. Spec. 77(4), 523–528 (2011)Google Scholar
  18. 18.
    S.E.H. Etaiw, A.H. Warida, Appl. Organomet. Chem. 24, 805–808 (2010)CrossRefGoogle Scholar
  19. 19.
    R.C. Wang, Y.C. Lin, S.H. Wu, Hydrometallurgy 99, 194–201 (2009)CrossRefGoogle Scholar
  20. 20.
    J.W. Fergus, J. Power Sources 195, 939–954 (2010)CrossRefGoogle Scholar
  21. 21.
    H. Chuangfang, L. Pingan, J. Xueqan, Procedia Eng. 15, 2619–2623 (2011)CrossRefGoogle Scholar
  22. 22.
    Y. Inui, Y. Kobayashi, Y. Watanobe, Y. Watase, Y. Kitamura, Energy Convers. Manag. 48, 2103–2109 (2007)CrossRefGoogle Scholar
  23. 23.
    K. Hwang, B. Kwon, H. Byun, J. Membr. Sci. 378, 111–116 (2011)CrossRefGoogle Scholar
  24. 24.
    E. Liu, H. Shen, X. Xiang, Z. Huang, Y. Tian, Y. Wu, Z. Wu, H. Xie, Mater. Lett. 67, 390–393 (2012)CrossRefGoogle Scholar
  25. 25.
    J. Xu, H.R. Thomas, R.W. Francis, K.R. Lum, J. Wang, B. Liang, J. Power Sources 177, 512–527 (2008)CrossRefGoogle Scholar
  26. 26.
    F. Cheng, J. Liang, Z. Tao, J. Chen, Adv. Mater. 23, 1695–1715 (2011)CrossRefGoogle Scholar
  27. 27.
    S.M. Kauzlarich, J.L. Stanton, J. Faber, B.A. Averill, J. Am. Chem. Soc. 108, 7946 (1986)Google Scholar
  28. 28.
    L.P. Liechti, B. Kemper, Lieb. Ann. 169, 347 (1973)Google Scholar
  29. 29.
    D. Guyomard, J.M. Tarascon, Adv. Mater. 6(5), 408 (1994)CrossRefGoogle Scholar
  30. 30.
    D. Fauteux, R. Koksbang, J. Appl. Electrochem. 23, 1 (1993)CrossRefGoogle Scholar
  31. 31.
    W.P. Griffith, G.T. Turner, J. Chem. Soc. A 858–862 (1970)Google Scholar
  32. 32.
    D.C. Apperley, N.A. Davies, R.K. Harris, S. Eller, P. Schwarz, R.D. Fischer, J. Chem. Soc. Chem. Commun. 10, 740–741 (1992)Google Scholar
  33. 33.
    H.H. Schmidtke, G. Evring, Z. Physik. Chim. Neue Folye. 925, 211 (1974)Google Scholar
  34. 34.
    A.K. Brimah, E. Siebel, R.D. Fischer, N.A. Davies, D.C. Apperley, R.K. Harris, J. Orgnaomet. Chem. 475, 85–94 (1994)CrossRefGoogle Scholar
  35. 35.
    M.H. Fery, S.J. Opella, J. Chem. Soc. Chem. Commun. 826, 474–475 (1980)Google Scholar
  36. 36.
    D.C. Apperley, N.A. Davies, R.K. Harris, A.K. Brimah, S. Eller, R.D. Fischer, Organometallics 9, 2672–2676 (1990)CrossRefGoogle Scholar
  37. 37.
    S. Eller, P. Schwarz, A.K. Brimah, R.D. Fischer, D.C. Apperely, N.A. Davies, R.K. Harris, Orgnaometallics 12, 3232–3240 (1993)CrossRefGoogle Scholar
  38. 38.
    E. Peled, J. Electrochem. Soc. 126, 2047–2051 (1979)CrossRefGoogle Scholar
  39. 39.
    J.R. Dahn, U. Von Sacken, M.W. Juzkow, H. Al Janabym, J. Electrochem. Soc. 138, 2207–2211 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Safaa El- din H. Etaiw
    • 1
  • Moustafa S. Ibrahim
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations