Skip to main content
Log in

Synthesis and Characterization of AgCl Nanoparticles Under Various Solvents by Ultrasound Method

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nano-structures of AgCl have been prepared by reaction between AgNO3 and KCl under ultrasound irradiation. Particle sizes and morphology of nanoparticle are depending on temperature and reaction time. The effects of these parameters in growth and morphology of the nano-structures have been studied. The solvents have noticeable influences on the morphology of the silver chloride particles. With an increase in the temperature and reaction time, growth toke place on more nuclei. As a result, an increase in temperature and reaction time led to increase of particle size. The physicochemical properties of the nanoparticles were determined by X-ray diffraction and scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Reverchon, R. Adamia, Nanomaterials and supercritical fluids. J. Supercrit. Fluids 37, 1–22 (2006)

    Article  CAS  Google Scholar 

  2. H.T. Shi, L.M. Qi, J.M. Ma, H.M. Cheng, Polymer-directed synthesis of penniform BaWO4 nanostructures in reverse micelles. J. Am. Chem. Soc. 125, 3450–3751 (2003)

    Article  CAS  Google Scholar 

  3. H. Zhang, D.R. Yang, D.S. Li, X.Y. Ma, S.Z. Li, D.L. Que, Controllable growth of ZnO microcrystals by a capping-molecule-assisted hydrothermal process. J. Cryst. Growth 5, 547–550 (2005)

    Article  CAS  Google Scholar 

  4. D. Kuang, A. Xu, Y. Fang, H. Liu, C. Frommen, D. Fenske, Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process. Adv. Mater. 15, 1747–1750 (2003)

    Article  CAS  Google Scholar 

  5. F. Kim, S. Connor, H. Song, T. Kuykendall, P.D. Yang, Platonic gold nanocrystals. Angew. Chem. Int. Ed. 43, 3673–3677 (2004)

    Article  CAS  Google Scholar 

  6. W. Hu, S. Chen, X. Li, S. Shi, W. Shen, X. Zhang, H. Wang, In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater. Sci. Eng. C 29, 1216–1219 (2009)

    Article  CAS  Google Scholar 

  7. H. Tan, W.Y. Fan, Laser-based synthesis of core Ag-shell AgI nanoparticles. Chem. Phys. Lett. 406, 289–293 (2005)

    Article  CAS  Google Scholar 

  8. B. Tomsic, B. Simoncic, B. Orel, M. Zerjav, H. Schroers, A. Simoncic, Z. Samardzij, Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydr. Polym. 75, 618–626 (2009)

    Article  CAS  Google Scholar 

  9. A.R. Abbasi, A. Morsali, Syntheses and characterization of AgI nano-structures by ultrasonic method: Different morphologies under different conditions. Ultrason. Sonochem. 17, 572–578 (2010)

    Article  CAS  Google Scholar 

  10. J. Bai, Y. Li, M. Li, S. Wang, C. Zhang, Q. Yang, Electrospinning method for the preparation of silver chloride nanoparticles in PVP nanofiber. Appl. Surf. Sci. 254, 4520–4523 (2008)

    Article  CAS  Google Scholar 

  11. J.P. Tiwari, R.K. Rao, Template synthesized high conducting silver chloride nanoplates. Solid State Ionics 179, 299–304 (2008)

    Article  CAS  Google Scholar 

  12. M.M. Husein, E. Rodil, J.H. Vera, A novel method for the preparation of silver chloride nanoparticles starting from their solid powder using microemulsions. J. Colloid Interface Sci. 288, 457–467 (2005)

    Article  CAS  Google Scholar 

  13. M. Husein, E. Rodil, J.H. Vera, Formation of silver chloride precipitate of nanoparticles in a single microemulsion utilizing the surfactant counterion. J. Colloid Interface Sci. 273, 426–434 (2004)

    Article  CAS  Google Scholar 

  14. M.G. Spirin, S.B. Brichkin, V.F. Razumov, Growth kinetics for AgI nanoparticles in AOT reverse micelles: effect of molecular length of hydrocarbon solvents. J. Colloid Interface Sci. 326, 117–120 (2008)

    Article  CAS  Google Scholar 

  15. L. Zhao, Y. Wang, Z. Chen, Y. Zou, Preparation, characterization, and optical properties of host–guest nanocomposite material SBA-15/AgI. J. Phys. B 403, 1775–1780 (2008)

    Article  CAS  Google Scholar 

  16. I.L. Validzic, V. Jokanovic, D.P. Uskokovi, J.M. Nedeljkovi, Influence of solvent on the structural and morphological properties of AgI particles prepared using ultrasonic spray pyrolysis. Mater. Chem. Phys. 107, 28–32 (2008)

    Article  Google Scholar 

  17. A.R. Abbasi, A. Morsali, Formation of silver iodide nanoparticles on silk fiber by means of ultrasonic irradiation. Ultrason. Sonochem. 17, 704–710 (2010)

    Article  CAS  Google Scholar 

  18. K.S. Suslick, Sonochemistry. Science 247, 1439–1445 (1990)

    Article  CAS  Google Scholar 

  19. K.H. Kim, K.B. Kim, Ultrasound assisted synthesis of nano-sized lithium cobalt oxide. Ultrason. Sonochem. 15, 1019–1025 (2008)

    Article  CAS  Google Scholar 

  20. P. Potiyaraj, P. Kumlangdudsana, S.T. Dubas, Synthesis of silver chloride nanocrystal on silk fibers. Mater. Lett. 61, 2464–2466 (2007)

    Article  CAS  Google Scholar 

  21. M.A. Alavi, A. Morsali, Syntheses and characterization of Sr(OH)2 and SrCO3 nanostructures by ultrasonic method. Ultrason. Sonochem. 17, 132–138 (2010)

    Article  CAS  Google Scholar 

  22. T.G. Clarke, N.A. Hampson, J.B. Lee, J.R. Morley, B. Scanlon, Oxidations involving silver 11. The oxidation of alcohols and aldehydes with silver (1I) picolinate. Can. J. Chem. 47, 1649–1654 (1969)

    Article  CAS  Google Scholar 

  23. M.G. Spirin, S.B. Brichkin, V.F. Razumov, Growth kinetics for AgI nanoparticles in AOT reverse micelles: effect of molecular length of hydrocarbon solvents. Colloid Interface Sci. 326, 117–120 (2008)

    Article  CAS  Google Scholar 

  24. A.R. Abbasi, A. Morsali, Synthesis and characterization of AgBr-Silk nanocomposite under ultrasound irradiation. J. Inog. Organomet. Polym. 20, 825–832 (2010)

    Article  CAS  Google Scholar 

  25. N. Izu, W. Shin, I. Matsubara, N. Murayama, The effects of the particle size and crystallite size on the response time for resistive oxygen gas sensor using cerium oxide thick film. Sens. Actuators B 94, 222–227 (2003)

    Article  Google Scholar 

  26. U. Shönauer, Response times of resistive thick-film oxygen sensors. Sens. Actuators B 4, 431–436 (1991)

    Article  Google Scholar 

  27. M. Fleischer, H. Meixner, Fast gas sensors based on metal oxides which are stable at high temperature. Sens. Actuators B 43, 1–10 (1997)

    Article  Google Scholar 

  28. R. Moos, W. Menesklou, H.-J. Schreiner, K.H. Härdtl, Materials for temperature independent resistive oxygen sensors for combustion exhaust gas control. Sens. Actuators B 67, 178–183 (2000)

    Article  Google Scholar 

  29. A.R. Abbasi, A. Morsali, Synthesis and properties of silk yarn containing Ag nanoparticles under ultrasound irradiation. Ultrason. Sonochem. 18, 282–287 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support of this investigation by Tarbiat Modares University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Morsali.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 285 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbasi, A.R., Morsali, A. Synthesis and Characterization of AgCl Nanoparticles Under Various Solvents by Ultrasound Method. J Inorg Organomet Polym 23, 286–292 (2013). https://doi.org/10.1007/s10904-012-9774-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-012-9774-9

Keywords

Navigation