Skip to main content

Advertisement

Log in

Surface Treated Montmorillonite: Structural and Thermal Properties of Chiral Poly(Amide-Imide)/Organoclay Bionanocomposites Containing Natural Amino Acids

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This work concerns the preparation of novel optically active nanocomposite materials derived from Cloisite Na+ clay, which has been functionalized by protonated l-methionine amino acid as a swelling agent for sufficient compatibilization with the poly(amide-imide) (PAI) matrix. The polymer chains were formed from the polycondensation reaction of N,N′-(pyromellitoyl)-bis-phenylalanine diacid chloride with 4,4′-diaminodiphenylether. Interaction between the two phases was established by modifying the PAI chains with amine end groups and free acid groups of the organoclay (OC). The effect of OC dispersion and the interaction between OC and PAI chains on the properties of resulting bionanocomposite material was studied using Fourier transform infrared spectroscopy, X-ray diffraction (XRD), transmission electron microscopy, field emission scanning electron microscopy and thermogravimetric analysis techniques. The XRD pattern and morphological investigation revealed the formation of intercalated and exfoliated OC platelets in the matrix. Because of the existence of naturally occurring amino acids as biological chiral resources, it is predictable that these materials may be potentially biodegradable and biocompatible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Arroyo, R.V. Suarez, B. Herrero, M.A. Lopez-Manchado, J. Mater. Chem. 13, 2915–2921 (2003)

    Article  CAS  Google Scholar 

  2. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Karauchi, O. Kamigaito, J. Mater. Res. 6, 1185–1189 (1993)

    Article  Google Scholar 

  3. L.S. Schadler, Nanocomposite Science and Technology, Chapter 2 (Wiley, Weinheim, 2003)

  4. S. Edmondson, V.L. Osborne, W.T.S. Huck, Chem. Soc. Rev. 33, 14–22 (2004)

    Article  CAS  Google Scholar 

  5. B. Chen, J.R.G. Evans, Macromolecules 39, 747–754 (2006)

    Article  CAS  Google Scholar 

  6. G. Lazzara, S. Milioto, Polym. Degrad. Stab. 95, 610–617 (2010)

    Article  CAS  Google Scholar 

  7. D. Garca-Lopez, J.F. Ferndez, J.C. Merino, J. Santaren, J.M. Pastor, Compos. Sci. Technol. 70, 1429–1436 (2010)

    Article  Google Scholar 

  8. F. Chivrac, E. Pollet, L. Averous, Mater. Sci. Eng. R 7, 1–17 (2009)

    Google Scholar 

  9. H. Zou, S. Wu, J. Shen, Chem. Rev. 08, 3893–3957 (2008)

    Article  Google Scholar 

  10. S. Mishra, S.S. Sonawane, N.G. Shimpi, Appl. Clay Sci. 46, 222–225 (2009)

    Article  CAS  Google Scholar 

  11. K. Wang, L. Chen, J. Wu, M. Ling, C. He, A.F. Yee, Macromolecules 38, 788–800 (2005)

    Article  CAS  Google Scholar 

  12. D. Gournis, L. Jankovi, E. Maccallini et al., J. Am. Chem. Soc. 128, 6154–6163 (2006)

    Article  CAS  Google Scholar 

  13. M.O. Abdalla, D. Dean, S. Campbell, Polymer 43, 5887–5893 (2002)

    Article  CAS  Google Scholar 

  14. R. Krishnamoorti, R.A. Vaia, Emmanuel P. Giannelis Chem. Mater. 8, 1728–1734 (1996)

    CAS  Google Scholar 

  15. S. Zulfiqar, A. Kausar, M. Rizwan, M. Ilyas Sarwar, Appl. Surf. Sci. 4, 404–414 (2010)

    Google Scholar 

  16. B. Chena, J.R.G. Evans, Soft Matter 5, 3572–3584 (2009)

    Article  Google Scholar 

  17. X. Zhang, L.S. Loo, Polymer 50, 2643–2654 (2009)

    Article  CAS  Google Scholar 

  18. T.D. Fornes, P.J. Yoon, H. Keskkula, D.R. Paul, Polymer 42, 9929–9940 (2001)

    Article  CAS  Google Scholar 

  19. J. Zhu, F.M. Uhl, A.B. Morgan, C.A. Wilkie, Chem. Mater. 13, 4649–4654 (2001)

    Article  CAS  Google Scholar 

  20. K. Yano, A. Usuki, T. Karauchi, O. Kamigaito, J. Polym. Sci. A Polym. Chem. 31, 2493–2498 (1993)

    Article  CAS  Google Scholar 

  21. B. Chen, R.G. Evans, H.C. Greenwell, P. Boulet, P.V. Coveney, A.A. Bowden, A. Whiting, Chem. Soc. Rev. 37, 568–594 (2008)

    Article  Google Scholar 

  22. J.W. Gilman, R.H. Harris, J.R. Shields, T. Kashiwagi, A.B. Morgan, Polym. Adv. Technol. 17, 263–271 (2006)

    Article  CAS  Google Scholar 

  23. T. Kashiwagi, R.H. Harris Jr, X. Zhang, R.M. Briber, B.H. Cipriano, S.R. Raghavan, W.H. Awad, J.R. Shields, Polymer 45, 881–891 (2004)

    Article  CAS  Google Scholar 

  24. P. Kiliaris, C.D. Papaspyrides, Prog. Polym. Sci. 35, 902–958 (2010)

    Article  CAS  Google Scholar 

  25. E. Ruiz-hitzky, A. Van Meerbeek, Clay mineral and organoclay-polymer nanocomposite, in Handbook of Clay Science, ed. by F. Bergaya, B.K.G. Theng, G. Lagaly. Developments in clay science, vol. 1, Chapter 10.3 (2006) pp. 583–621

  26. P. Boulet, A.A. Bowden, P.V. Coveney, A. Whiting, J. Mater. Chem. 13, 2540–2550 (2003)

    Article  CAS  Google Scholar 

  27. M. Alexandre, P. Dubois, Mater. Sci. Eng. 28, 1–63 (2000)

    Article  Google Scholar 

  28. X. Qin, Y. Wu, K. Wang, H. Tan, J. Nie, Appl. Clay Sci. 45, 133–138 (2009)

    Article  CAS  Google Scholar 

  29. S. Sinha Ray, M. Okamoto, Prog. Polym. Sci. 28, 1539–1641 (2003)

    Article  Google Scholar 

  30. M. Ataeefard1, S. Moradian, Appl. Surf. Sci. 257, 2320–2326 (2011)

    Google Scholar 

  31. R.H. Vora, Mater. Sci. Eng. B 168, 71–84 (2010)

    Article  Google Scholar 

  32. S. Abida, R.E. Gharbia, A. Gandini, Polymer 45, 6469–6478 (2004)

    Article  Google Scholar 

  33. E. Abouzari-Lotf, A. Shockravi, A. Javadi, Polym. Degrad. Stab. 96, 1022–1028 (2011)

    Article  CAS  Google Scholar 

  34. A. Ranade, N.A. Dsouza, B. Gnade, Polymer 43, 3759–3766 (2002)

    Article  CAS  Google Scholar 

  35. S. Mallakpour, A. Zadehnazari, Express Polym. Lett. 5, 142–181 (2011)

    Article  CAS  Google Scholar 

  36. S. Mallakpour, P. Asadi, Colloid Polym. Sci. 288, 1341–1349 (2010)

    Article  CAS  Google Scholar 

  37. S. Mallakpour, M. Dinari, Polymer 52, 2514–2523 (2011)

    Article  CAS  Google Scholar 

  38. Y. Zhang, Z. Lu, X. Deng, Y. Liu, C. Tan, Y. Zhao, X. Kong, Opt. Mater. 22, 187–192 (2003)

    Article  CAS  Google Scholar 

  39. L. Feng, J. Hu, Z. Liu, F. Zhao, G. Liu, Polymer 48, 3616–3623 (2007)

    Article  CAS  Google Scholar 

  40. K. Sosa, A. Mori, M. Sisido, Y. Imanishi, Biomaterials 6, 312–324 (1985)

    Article  CAS  Google Scholar 

  41. Y. Kakizawa, A. Harada, K. Kataoka, Biomacromolecules 2, 491–497 (2001)

    Article  CAS  Google Scholar 

  42. S. Mallakpour, M. Dinari, Appl. Clay Sci. 51, 353–359 (2011)

    Article  CAS  Google Scholar 

  43. S.E. Mallakpour, A.R. Hajipour, S. Habibi, J. Appl. Polym. Sci. 86, 2211–2216 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express gratitude to the Research Affairs Division Isfahan University of Technology (IUT), Isfahan, for partial financial support. Further financial from the National Elite Foundation (NEF), Iran Nanotechnology Initiative Council (INIC), and Center of Excellence in Sensors and Green Chemistry Research (IUT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallakpour, S., Dinari, M. Surface Treated Montmorillonite: Structural and Thermal Properties of Chiral Poly(Amide-Imide)/Organoclay Bionanocomposites Containing Natural Amino Acids. J Inorg Organomet Polym 22, 929–937 (2012). https://doi.org/10.1007/s10904-012-9673-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-012-9673-0

Keywords

Navigation