Skip to main content
Log in

Investigation on Decomposition Kinetic and Thermal Stability of Metallocene Catalysts

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Data on thermal stability of metallocene catalysts such as bis(n-butyl cyclopentadienyl) zirconium dichloride and bis(t-butyl cyclopentadienyl) zirconium dichloride is required because of their application in high temperature polymerization process. In the present study, the thermal stability of the bis(n-butyl cyclopentadienyl) zirconium dichloride and bis(t-butyl cyclopentadienyl) zirconium dichloride was determined by differential scanning calorimetry (DSC) and simultaneous thermogravimetry-differential thermal analysis (TG-DTA) techniques. The results of TG analysis revealed that the main thermal degradation for the bis(n-butyl cyclopentadienyl) zirconium dichloride and bis(t-butyl cyclopentadienyl) zirconium dichloride occurs in the temperature ranges of 194–360 °C and 195–350 °C, respectively. On the other hand, TG-DTA analysis indicated that bis(n-butyl cyclopentadienyl) zirconium dichloride melts (about 98.7 °C) before it decomposes. However, the thermal decomposition of the bis(t-butyl cyclopentadienyl) zirconium dichloride was started simultaneously with its melting. Also, the kinetic parameters such as activation energy and frequency factor for both compounds were obtained from the DSC data by non-isothermal methods proposed by Kissinger and Ozawa. Based on the values of activation energy obtained by Kissinger and Ozawa methods, the following order for the thermal stability was noticed: bis(t-butyl cyclopentadienyl) zirconium dichloride >bis(n-butyl cyclopentadienyl) zirconium dichloride. Finally, the values of ΔS#, ΔH# and ΔG# of their decomposition reaction were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. F. Silveira, S.R. Loureiro, G.B. de Galland, F.C. Stedile, J.H.Z. dos Santos, T. Teranishi, J. Mol. Catal. A 206, 389–394 (2003)

    Article  CAS  Google Scholar 

  2. G.G. Hlatky, in Metallocene-Based Polyolefins, vol. 1, ed. by J. Scheirs, W. Kaminsky (West Sussex, UK, 2000), pp. 201–218

  3. J.H.Z. dos Santos, P.P. Greco, F.C. Stedile, J. Dupont, J. Mol. Catal. A 154, 103–107 (2000)

    Article  CAS  Google Scholar 

  4. H.H. Brintzinger, D. Fischer, R. Mulhaupt, B. Rieger, R. Waymouth, Angew. Chem., Int. Ed. Engel. 34, 1443–1447 (1995)

    Article  Google Scholar 

  5. W. Kaminsky, J. Chem Soc., Dalton Trans 14, 13–17 (1998)

    Google Scholar 

  6. B.A. Krentzel, Y.V. Kissin, V.I. Kleiner, L.L. Stotoskaya, in Polymers and Copolymers of Higher α-Olefins, Chapt. 1 (Hanser Publihers, Munich, 1997), p. 11

  7. J.A. Ewen, Sci. Am. 60, 97–103 (1997)

    Google Scholar 

  8. D. Bianchini, F.C. Stedile, J.H.Z. dos Santos, Appl. Catal. A-Gen 261, 57–61 (2004)

    Article  CAS  Google Scholar 

  9. R. Guimaraes, F.C. Stedile, J.H.Z. dos Santos, J. Mol. Catal. A 206, 353–557 (2003)

    Article  CAS  Google Scholar 

  10. L.L. Bohm, J. Berthold, H.-F. Enderle, M. Flessner, in Metaloganic Catalysts for Synthesis and Polymerrization, ed by W. Kaminsky (Springer, Heidelberg, 1999), p. 3

  11. W. Kaminsky (ed.), Metallorganic Catalysts for Synthesis and Polymerization, Chapt. 9 (VCH, Weinheim, 1998), p. 547

  12. B.A. Krentzel, Y.V. Kissin, V.I. Kleiner, L.L. Stotskaya, in Polymers and Copolymers of Higher α-Olefins, (Hanser Publishers, Munich, 1997), p. 11

  13. A.A. Montagna, A.H. Dekmezian, R.M. Burkhart, Chemtech. 27, 26–31 (1997)

    CAS  Google Scholar 

  14. H.C. Welborn Jr., C.S. Speed, U.S. Patent 5,084,534 (1992)

  15. K. Alder, H. Ache, J. Chem Ber 95, 503–508 (1962)

    Article  CAS  Google Scholar 

  16. S.M. Pourmortazavi, S.S. Hajimirsadeghi, S.G. Hosseini, J. Therm. Anal. Calorim. 84, 557–561 (2006)

    Article  CAS  Google Scholar 

  17. S.G. Hosseini, S.M. Pourmortazavi, S.S. Hajimirsadeghi, Combust. Flame 141, 322–326 (2005)

    Article  CAS  Google Scholar 

  18. M. Fathollahi, S.M. Pourmotazavi, S.G. Hosseini, Combust. Flame 138, 304–308 (2004)

    Article  CAS  Google Scholar 

  19. S.M. Pourmortazavi, M. Fathollahi, S.S. Hajimirsadeghi, S.G. Hosseini, Thermochim. Acta 443, 129–131 (2006)

    Article  CAS  Google Scholar 

  20. H.C. Welborn, C.S. Speed, U.S. Patent 5084534 (1992)

  21. H.E. Kissinger, Anal. Chem. 29, 1702–1707 (1957)

    Article  CAS  Google Scholar 

  22. T. Ozawa, J. Therm Anal. 2, 301–312 (1970)

    Article  CAS  Google Scholar 

  23. J.H. Flynn, Thermochim. Acta 4, 323–328 (1966)

    CAS  Google Scholar 

  24. J.H. Sharp, Reaction kinetics, in Mackenzie, Differential Thermal Analysis, ed. by R.C. Mackenzie (Academic Press, London, 1972), p. 47

  25. M.J. Starink, Thermochim Acta 288, 97–102 (1996)

    Article  CAS  Google Scholar 

  26. Z.R. Lu, Chin. J. Inorg. Chem 14, 119–122 (1998)

    CAS  Google Scholar 

  27. M.E. Brown, A.K. Galwey, Thermochim. Acta 387, 173–178 (2002)

    Article  CAS  Google Scholar 

  28. J. Straszko, M.O. Humienik, J. Mozejko, Thermochim. Acta 292, 145–149 (1997)

    Article  CAS  Google Scholar 

  29. ASTM E 698, Test methods for Arrhenius kinetic constants for thermally unstable materials

  30. J.H. Flynn, L.A. Wall, J. Polym Sci. Part B 4, 323–326 (1966)

    Article  CAS  Google Scholar 

  31. M.O. Humienik, J. Mozejko, Thermochim. Acta 344, 73–78 (2000)

    Article  Google Scholar 

  32. A.A. Frost, R.G. Pearson, Kinetics and mechanisms (Wiley, New York, 1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Pourmortazavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azimfar, F., Kohsari, I. & Pourmortazavi, S.M. Investigation on Decomposition Kinetic and Thermal Stability of Metallocene Catalysts. J Inorg Organomet Polym 19, 181–186 (2009). https://doi.org/10.1007/s10904-009-9258-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-009-9258-8

Keywords

Navigation