Skip to main content
Log in

Abstract

Silicones in various forms have been utilized in biomedical applications over the past several decades. While silicone elastomers are currently the most common silicone biomaterial, low molar mass cyclic silicones, low molar mass linear silicones, silicone oligomers, silicone polymers and silicone gels have each found applications as biomaterials. For the biomedical applications of silicones, it is required that the materials be sterilized prior to application or implantation. Common methods of sterilization include steam sterilization, ethylene oxide sterilization, electron beam sterilization and gamma sterilization. In this review we will describe the behavior of various silicones upon exposure to gamma radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. E.G. Rochow, An Introduction to the Chemistry of the Silicones (John Wiley & Sons, New York, NY, USA, 1946)

    Google Scholar 

  2. W. Noll, Chemistry and Technology of Silicones (Academic Press, Orlando, FL, USA, 1968)

    Google Scholar 

  3. H.A. Liebhafsky, Silicones Under the Monogram: A Story of Industrial Research (John Wiley & Sons, New York, NY, 1978)

    Google Scholar 

  4. E.L. Warrick, Forty Years of Firsts: The Recollections of a Dow Corning Pioneer (McGraw-Hill, New York, NY, USA, 1990)

    Google Scholar 

  5. E.G. Rochow, Silicon and Silicones (Springer-Verlag, Berlin, Germany, 1987)

    Google Scholar 

  6. S.J. Clarson, J.A. Semylen (eds.), Siloxane Polymers (Prentice Hall, Englewood Cliffs, NJ, USA, 1993)

    Google Scholar 

  7. B. Knaap, Silicon (Grolier Educational, Danbury, CT, USA, 1996)

    Google Scholar 

  8. J. Thomas, The Elements: Silicon (Benchmark Books, Marshall Cavendish Corporation, Tarrytown, NY, USA, 2002)

    Google Scholar 

  9. S.J. Clarson, J.E. Mark, Silicone elastomers, in Polymeric Materials Encyclopedia, ed. by J. Salamone, vol 10, (1996) p. 7663

  10. S.J. Clarson, Silicones and silicone-modified materials: a concise overview, in Synthesis and Properties of Silicones and Silicone–Modified Materials, ed. by S.J. Clarson, J.J. Fitzgerald, M.J. Owen, S.D. Smith, M.E. Van Dyke, ACS Symposium Series Volume 838, (Oxford University Press, New York, NY, USA, 2003), p. 2

  11. A. Colas, J. Curtis, Silicone biomaterials: history, chemistry and major applications of silicones, printed in Biomaterials Science: An Introduction to Materials in Medicine, 2nd edn., (Elsevier Publications, 1996) pp. 80–86 and pp. 697–707

  12. R.R. Mcgregor, Physiological Response to Silicones, in Silicones and Their Uses (McGraw-Hill, New York, NY, 1954), pp. 188–198

    Google Scholar 

  13. W. Noll, Physiological Behaviour, in Chemistry and Technology of Silicones (Academic Press, Orlando, Florida, USA, 1968), pp. 516–527

    Google Scholar 

  14. B. Arkles, Look what you can make from silicones. Chemtech, 13, 542–555 (1983)

    CAS  Google Scholar 

  15. E.L. Warrick, Center for aid to medical research, in Forty Years of Firsts: The Recollections of a Dow Corning Pioneer, ed. by E.L. Warwick, (McGraw-Hill, New York, NY, USA, 1990), pp. 184–187

    Google Scholar 

  16. E.L. Warrick, Medical products business, in Forty Years of Firsts: The Recollections of a Dow Corning Pioneer, ed. by E.L. Warwick (McGraw-Hill, New York, NY, USA, 1990)

    Google Scholar 

  17. S.A. Visser, R.W. Hergenrother, S.L. Cooper, Polymers, in Biomaterials Science: An Introduction to Materials in Medicine, ed. by B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons (Academic Press, San Diego, CA, USA, 1996), p. 59

    Google Scholar 

  18. M.A. Brook, Silicon in a biological environment, in Silicon in Organic, Organometallic and Polymer Chemistry, ed. by M.A. Brook (John Wiley and Sons, New York, NY, 2000), pp. 459–479

    Google Scholar 

  19. M.A. Van Dyke, S.J. Clarson, R. Arshady, Silicone biomaterials, in Introduction to Biomaterials, ed. by R. Arshady (Citus Books, London, UK, 2003), pp. 109–135

    Google Scholar 

  20. S.D. Bruck, Sterilization problems of synthetic biocompatible materials. J. Biomed. Mater. Res. 5(3), 139 (1971)

    Article  CAS  Google Scholar 

  21. S.D. Bruck, E.P. Mueller, Radiation sterilization of polymeric implant materials, J. Biomed. Mater. Res. Appl. Biomater. 22(A2), 133–144 (1988)

    Article  CAS  Google Scholar 

  22. J.B. Park, R.S. Lakes, Sterilization effects in biomaterials: an introduction by Plenum Press, New York, NY, USA, (1992), p. 162

  23. J.B. Kowalski, R.F. Morrissey, Sterilization of implants, in Biomaterials Science: An Introduction to Materials in Medicine, ed. by B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons (Academic Press, San Diego, CA, USA, 1996), pp. 415–420

    Google Scholar 

  24. A. Charlesby, Changes in silicone polymeric fluids due to high-energy radiation, Proc. Roy. Soc. A230(1180), 120, (1955)

    Google Scholar 

  25. A.M. Bueche, An investigation of the theory of rubber elasticity using irradiated Polydimethylsiloxane, J. Polym. Sci. 19, 297–306 (1956)

    Article  CAS  Google Scholar 

  26. A.A. Miller, Radiation chemistry of polydimethylsiloxane, crosslinking and gas yields, J. Amer. Chem. Soc. 82, 3519 (1960)

    Article  CAS  Google Scholar 

  27. A. Charlesby, P.G. Garratt, Radiation protection in irradiated dimethylsiloxane polymers, Proc. Roy. Soc. Lond. A273, 117–132 (1963)

    Google Scholar 

  28. H.A. Dewhurst, L.E. St. Pierre, Radiation chemistry of hexamethyldisiloxane, A Polydimethylsiloxane model, J. Phys. Chem. 64, 1063 (1960)

    Article  CAS  Google Scholar 

  29. A.A. Miller, Radiation chemistry of polydimethylsiloxane II effects of additives, J. Am. Chem. Soc. 83, 31–36 (1961)

    Article  CAS  Google Scholar 

  30. M.G. Ormerod, A. Charlesby, The radiation chemistry of some polysiloxanes: an electron spin resonance study, Polymer 4, 459–470 (1963)

    Article  CAS  Google Scholar 

  31. H. Menhofer, H. Heusinger, Radical formation in polydimethylsiloxanes and polydimethylphenylsiloxanes studies by the ESR spintrap technique, Radiat. Phys. Chem. 29(4), 243–251 (1987)

    CAS  Google Scholar 

  32. H.A. Dewhurst, L.E. St. Pierre, The effect of oxygen on the radiolysis of silicones, J. Phys. Chem. 64, 1060 (1960)

    Article  Google Scholar 

  33. H. Menhofer, J. Zluticky, H. Heusinger, The influence of irradiation temperature and oxygen on crosslink formation and segment mobility in gamma irradiated polydimethylsiloxanes, Radiat. Phys. Chem. 33(6), 561–566 (1986)

    Google Scholar 

  34. C.G. Delides, The protective effect of phenyl group on the crosslinking of irradiated dimethyldiphenylsiloxane, Radiat. Phys. Chem. 16(5), 345–352 (1980)

    CAS  Google Scholar 

  35. G.C. Corfield, D.T. Astill, D.W. Clegg, Radiation stability of silicon elastomers, Amer. Chem. Soc. 24, 473 (1984)

    Google Scholar 

  36. D.J.T. Hill, C.M.L. Preston, A.K. Whittaker, S.M. Hunt, The radiation chemistry of poly(dimethylsiloxane), Macromol. Symp. 195, 95 (2000)

    Article  Google Scholar 

  37. D.J.T. Hill C.M.L. Preston A.K. Whittaker, NMR study of the gamma radiolysis of poly(dimethylsiloxane) under vacuum at 303 K, Polymer 43(4), 1051 (2002)

    Article  Google Scholar 

  38. D.J.T. Hill, C.M.L. Preston, D.J. Salisbury, A.K. Whittaker, Molecular weight changes and scission and crosslinking in poly(dimethylsiloxane) on gamma radiolysis, Rad. Phys. Chem. 62, 11–17 (2001)

    Article  CAS  Google Scholar 

  39. E.L. Warrick, Effect of radiation on organopolysiloxanes, Ind. Engg. Chem. 24(7), 842 (1955)

    Google Scholar 

  40. A.A. Basfar, Hardness measurements of silicone rubber and polyurethane rubber cured by ionizing radiation, Radiat. Phys. Chem. 50(6), 607 (1997)

    Article  CAS  Google Scholar 

  41. J.E. Mark, D.W. McCarthy, Poly(dimethylsiloxane) elastomers from aqueous emulsions: III effects of blended silica fillers and gamma-radiation induced crosslinking, Rub. Chem. Tech. 71, 941 (1998)

    Google Scholar 

  42. A. Chien, R. Maxwell, D. Chambers, B. Balazs, J. LeMay, Characterization of radiation-induced aging in silica-reinforced polysiloxane composites, Rad. Phys. Chem. 59, 493–500 (2000)

    Article  CAS  Google Scholar 

  43. R. Maxwell, R. Cohenour, W. Sung, D. Solyom, M. Patel, The effects of gamma-radiation on the thermal, mechanical and segmental dynamics of a silica filled, room temperature vulcanized polysiloxane rubber, Poly. Degrad. Stab. 80, 443–450 (2003)

    Article  CAS  Google Scholar 

  44. I.S. Lazurkin, G.P. Ushakov, The effect of radiation on properties of silicone rubber, Atom. Energy 4(3), 365 (1958)

    Article  CAS  Google Scholar 

  45. S.O. Rogero, J.S. Sousa, D. Alario, L. Lopergolo, A.B. Lugao, Silicone crosslinked by ionizing radiation as a potential polymeric matrix for drug delivery, Nucl. Instrum. Methods Phy. Res. B, 236, 521 (2005)

    Article  CAS  Google Scholar 

  46. I. Stevenson, L. David, C. Gauthier, L. Arambourg, J. Davenas, G. Vigier, Influence of silica fillers on the irradiation ageing of silicone rubbers, Polymer, 42, 9287–9292 (2001)

    Article  CAS  Google Scholar 

  47. E.J. Lawton, W.T. Grubb, J.S. Balwit, A solid state polymerization initiated by high energy electrons, J. Polym. Sci. 19, 455 (1956)

    Article  CAS  Google Scholar 

  48. C.J. Wolf, A.C. Stewart, Radiation chemistry of octamethylcyclotetrasiloxane, J. Phys. Chem. 66, 1119 (1962)

    Article  Google Scholar 

  49. A.S. Chawla, L.E. St. Pierre, Gamma ray-induced liquid–state polymerization of hexamethylcyclotrisiloxane and octamethylcyclotetrasiloxane, J. App. Polym. Sci. 16, 1887–1891 (1972)

    Article  CAS  Google Scholar 

  50. A.S. Chawla, L.E. St. Pierre, Solid state polymerization of hexamethylcyclotrisiloxane II, J. Polym. Sci. A1, 10(9), 2691 (1972)

    Article  CAS  Google Scholar 

  51. J.J. Lebrun, A. Deffieux, P. Sigwalt, A. Wang, V. Stannett, The radiation induced polymerization of hexamethylcyclotrisiloxane and octamethylcyclotetrasiloxane in solid and liquid states, Radiat. Phys. Chem. 24(2), 239 (1984)

    CAS  Google Scholar 

  52. D.M. Naylor, V. Stannett, A study of the ionic polymerization of decamethylcyclopentasiloxane induced by gamma radiation, J. Polym. Sci: Part C: Polym. Lett. 24, 319–326 (1986)

    Article  CAS  Google Scholar 

  53. D.M. Naylor, V. Stannett, A. Deffieux, P. Sigwalt, Radiation induced polymerization of dimethylcyclosiloxanes in the liquid state: I. Influence of drying and the nature of the propagation mechanism, Polymer 31, 954 (1990)

    Article  CAS  Google Scholar 

  54. D.M. Naylor, V. Stannett, A. Deffieux, P. Sigwalt, Radiation induced polymerization of dimethylcyclosiloxanes in the liquid state: 2. Polymerization kinetics of D3, D4 and D5 and the distribution of products, Polymer 32(6), 1084 (1991)

    Article  CAS  Google Scholar 

  55. D.M. Naylor, V. Stannett, A. Deffieux, P. Sigwalt, Radiation induced polymerization of dimethylcyclosiloxanes in the liquid state: 3. Copolymerization of D3 with D4 and D4 with D5, reactivities and interpretation, Polymer 35(8), 1764 (1994)

    Article  CAS  Google Scholar 

  56. J.A. Semlyen, Polymers based on long chain and large ring molecules, in Large Ring Molecules, ed. by J.A. Semlyen (John Wiley & Sons, Chichester, England), p. 3

  57. P.G. de Gennes, Cornell University Press, Ithaca, NY, USA, pp. 132–133

  58. J.F. Zack, E.L. Warrick, G. Knoll, Radiation stability of organosilicon compounds, J. Chem. Eng. Data 6(2), 279 (1961)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Clarson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palsule, A.S., Clarson, S.J. & Widenhouse, C.W. Gamma Irradiation of Silicones. J Inorg Organomet Polym 18, 207–221 (2008). https://doi.org/10.1007/s10904-008-9205-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-008-9205-0

Keywords

Navigation