Skip to main content
Log in

An Erratum to this article was published on 05 October 2012

Abstract

Conventional molecular wires of the oligophenyleneethynylene (OPE) type are two-dimensional rigid molecules of fixed length. Possible problems concerning π,π stacking and device geometry associated therewith might be overcome by replacement of some of the 1,4-phenylene moieties by 1,1′-disubstituted ferrocene units. These make the wire three-dimensional thereby reducing the likelihood of intermolecular π,π interactions and serve in addition as hinges as a result of the almost free rotation around the Cp-Fe-Cp axis. This feature provides a limited conformational flexibility with the possibility of a length adjustment comparable to a foldable ruler. Here the syntheses and some physical properties of molecular wires containing two ferrocene hinges are described. In a number of cases the Sonogashira coupling reactions used for the coupling of the respective building blocks proceed much faster under microwave irradiation as compared to conventional heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.E. Moore, Electronics 38, 38 (1965)

    Google Scholar 

  2. P.A. Packan, Science 285, 2079 (1999)

    Article  CAS  Google Scholar 

  3. J.M. Tour, Molecular Electronics: Commercial Insights, Chemistry, Devices, Architecture and Programming (World Scientific, New Jersey, 2003)

  4. K. Nørgaard, M.B. Nielsen, T. Bjørnholm, in Functional Organic Materials. Syntheses, Strategies, and Applications, ed. T. J. J. Müller, U. Bunz (Wiley-VCH, Weinheim, 2007), p. 353

  5. R.L. Carrol, C.B. Gorman, Angew. Chem. 114, 4556 (2002); Angew. Chem. Int. Ed. 41, 4378 (2002)

    Google Scholar 

  6. M. Mayor, H.B. Weber, Chimia 56, 494 (2002)

    Article  Google Scholar 

  7. R.R. Tykwinski, Angew. Chem. 115, 1604 (2003); Angew. Chem. Int. Ed. 42, 1566 (2003)

    Google Scholar 

  8. T.N. Mitchell, in Metal-catalyzed Cross-coupling Reactions, ed. F. Diederich, P. J. Stang (Wiley-VCH, Weinheim, 1998), p. 167

  9. M. Vollmann, H. Butenschön, C. R. Chimie 8, 1282 (2005)

    Article  CAS  Google Scholar 

  10. A. Blaszczyk, M. Elbing, M. Mayor, Org. Biomol. Chem. 2, 2722 (2004)

    Article  CAS  Google Scholar 

  11. Donation of Wacker Chemie AG

  12. I.R. Butler, S.B. Wilkes, S.J. McDonald, L.J. Hobson, A. Taralp, C.P. Wilde, Polyhedron 12, 129 (1993)

    Article  CAS  Google Scholar 

  13. D.T. Gryko, C. Clausen, K.M. Roth, N. Dontha, D.F. Bocian, W.G. Kuhr, J.S. Lindsey, J. Org. Chem. 65, 7345 (2000)

    Article  CAS  Google Scholar 

  14. D.L. Pearson, J.M. Tour, J. Org. Chem. 62, 1376 (1997)

    Article  CAS  Google Scholar 

  15. R.P. Hsung, C.E.D. Chidsey, L.R. Sita, Organometallics 14, 4808 (1995)

    Article  CAS  Google Scholar 

  16. J. K. Pudelski, M.R. Callstrom, Organometallics 11, 2757 (1992)

    Article  CAS  Google Scholar 

  17. M. Buchmeiser, H. Schottenberger, J. Organomet. Chem. 436, 223 (1992)

    Article  CAS  Google Scholar 

  18. S.M. Dirk, D.W. Price, S. Chanteau, D.V. Kosynkin, J.M. Tour, Tetrahedron 57, 5109 (2001)

    Article  CAS  Google Scholar 

  19. T.-Y. Dong, S.-W. Chang, S.-F. Lin, M.-C. Lin, Y.-S. Wen, L. Lee, Organometallics 25, 2018 (2006)

    Article  CAS  Google Scholar 

  20. I.R. Butler, A.L. Boyes, G. Kelly, S.C. Quayle, T. Herzig, J. Szewczyk, Inorg. Chem. Commun. 2, 403 (1999)

    Article  CAS  Google Scholar 

  21. M. Mayor, H.B. Weber, J. Reichert, M. Elbing, C. von Haenisch, D. Beckmann, M. Fischer, Angew. Chem. 115, 6014 (2003); Angew. Chem. Int. Ed. 42, 5834 (2003)

    Google Scholar 

  22. N. Matsumi, K. Naka, Y. Chujo, J. Am. Chem. Soc. 120, 5112 (1998)

    Article  CAS  Google Scholar 

  23. J. Yin, G.-A. Yu, J. Guan, F. Mei, S.H. Liu, J. Organomet. Chem. 690, 4265 (2005)

    Article  CAS  Google Scholar 

  24. L.-X. Liao, F. Stellacci, D.V. McGrath, J. Am. Chem. Soc. 126, 2181 (2004)

    Article  CAS  Google Scholar 

  25. M. Moroni, J. Le Moigne, S. Luzzati, Macromolecules 27, 562 (1994)

    Article  CAS  Google Scholar 

  26. Y. Shirai, Y. Zhao, L. Cheng, J.M. Tour, Org. Lett. 6, 2129 (2004)

    Article  CAS  Google Scholar 

  27. D. Grebel-Köhler, D. Liu, S. De Feyter, V. Enkelmann, T. Weil, C. Engels, C. Samyn, K. Müllen, F.C. De Schryver, Macromolecules 36, 578 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was kindly supported by the Volkswagen Foundation and the Deutsche Forschungsgemeinschaft (SPP 1243). We thank Wacker Chemie AG for a donation of trimethylsilylethyne (7) and Octel Deutschland GmbH for a donation of ferrocene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Butenschön.

Additional information

This paper is dedicated to Professor Didier Astruc in honor of his pioneering research efforts and accomplishments in the field of organometallic materials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Vollmann, M., Menzel, H. et al. New Molecular Wires with Two Ferrocene Hinges. J Inorg Organomet Polym 18, 41–50 (2008). https://doi.org/10.1007/s10904-007-9189-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-007-9189-1

Keywords

Navigation