Skip to main content
Log in

Macromolecular Antiproliferative Agents Featuring Dicarboxylato-Chelated Platinum

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Cancerous diseases, together with cardiac afflictions, account for the predominant causes of death among the adult population of the Western world. The classical platinum drugs, with cisplatin as their parent, have established themselves for years as leading components in the oncologist’s arsenal of antitumor agents. As with most other antineoplastic drugs, however, incisive pharmacological deficiencies, notably excessive systemic toxicity and induction of drug resistance, have severely curtailed their overall efficaciousness. With the objective of overcoming these counterproductive deficiencies, the technique of polymer-drug conjugation, representing an advanced modality of drug delivery, has been developed in recent years to high standards worldwide. In a drug conjugate, water-soluble macromolecular carrier constructs designed in compliance with stringent pharmacological specifications are covalently, yet bioreversibly, interconnected with the bioactive agent. As a macromolecule following a pharmacokinetic pathway different from that of non-polymeric compounds, the conjugate acts as a pro-drug favorably transporting the agent through the various body compartments to, and into, the target cell, where the agent is enzymatically or hydrolytically separated from the carrier for its biological action. In the authors’ laboratories the conjugation strategy has been adopted as the primary tool for drug efficacy enhancement. The present paper describes a special type of platinum complex carrier-bound via dicarboxymetal chelation, synthesized from carboxyl-functionalized polyamide-type carriers by platination with trans-1,2-diaminocyclohexanediaquaplatinum(II) dinitrate. In a series of in vitro tests antiproliferative activities have been determined against several human cancer cell lines. Whereas no improvements are observed in tests against a colorectal cancer, outstanding findings of the screening program include a 10- to 100-fold increase in cell-killing performance of the conjugates relative to the (non-polymeric) cisplatin standard against the HeLa adenocarcinoma, and distinctly reduced resistance factors (again, relative to cisplatin) in tests against the A2780 and A2780-cis pair of ovarian cell lines. These findings augur well for future developments of this class of platinum drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 2
Scheme 6
Scheme 7
Scheme 8
Scheme 9

Similar content being viewed by others

References

  1. B. Rosenberg, L. van Camp, T. Krigas, Nature 205, 698 (1965). See also: Cancer Chemother. Rep. Part I. 59, 589 (1975)

  2. K.R. Harrap, in Cancer Chemotherapy, vol. 1, Chap. 7, ed. by F.M. Muggia (Martinus Nijhoff, MA, 1983)

  3. J.C. Dabrowiak, W.T. Bradner, Progr. Med. Chem. vol 24, ed. by G.P. Ellis, G.B. West (Elsevier Science Publ., 1987)

  4. W.R. Waud, in Cancer Chemotherapeutic Agents, ed. by W.O. Foye (Am. Chem. Soc, Washington DC, 1995), p. 121

    Google Scholar 

  5. M.J. Cleare, Coord. Chem. Rev. 12, 349 (1974). See also: Dev. Pharmacol. 3, 59 (1983)

  6. M.J. Cleare, J.D. Hoeschele, Platinum Metal. Rev. 6, 17 (1979). See also: Bioionorg. Chem. 2, 187 (1973)

  7. Cisplatin: Current Status and New Developments, ed. by A. Prestayko, S. Crooke, S. Carter (Academic Press, 1980)

  8. N. Farrell, in Transition Metal Complexes as Drugs and Chemotherapeutic Agents (Kluwer Academic, Dordrecht, 1989), p. 67. See also: in Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy, ed. by S.B. Howell (Plenum Press, 1991), p. 81

  9. P.C. Hydes, M.J.H. Russell, Cancer Metastasis Rev. 7, 67 (1988)

    Article  CAS  Google Scholar 

  10. S.J. Lippard, Pure Appl. Chem. 59, 731 (1987)

    Article  CAS  Google Scholar 

  11. J. Reedijk, A.M.J. Fichtinger-Schepman, A.T. van Oosterom, P. van de Putte, Struct. Bonding 67, 53 (1987). See also: Pure Appl. Chem. 59, 181 (1987); Chem. Rev. 99, 2499 (1999); Chem. Commun. 801 (1996)

    Google Scholar 

  12. E.W. Neuse, C.W.N. Mbonyana, in Inorganic and Metal-containing Polymeric Materials, ed. by J.E. Sheats et al. (Plenum Press, New York, 1990), p. 139

    Google Scholar 

  13. M.J. McKeage, L.R. Kelland, in Molecular Aspects of Drug-DNA Interactions, ed. by S. Neidle, M.J. Waring (MacMillan, New York, 1992), p. 1

    Google Scholar 

  14. L.R. Kelland, Drugs Future 18, 551 (1993). See also: Crit. Revs. Oncol./Hematol. 15, 191 (1993)

  15. C.M. Giandomenico et al., in Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy, ed. by S.B. Howell (Plenum Press, New York, 1991), p. 93

    Google Scholar 

  16. T.W. Hambley, Coord. Chem. Rev. 166, 181 (1997)

    Article  CAS  Google Scholar 

  17. E.W. Neuse, Polym. Adv. Technol. 9, 786 (1998)

    Article  CAS  Google Scholar 

  18. I. Kostova, Rec. Patents on Anti-Cancer Drug Discov. 1, 1 (2006)

    CAS  Google Scholar 

  19. D.W. Siegmann-Louda, C.E. Carraher, in Macromolecules Containing Metal and Metal-like Elements, Vol. 3, Biomedical Applications, Chap. 7, ed. by A.S. Abd-El-Aziz, C.E. Carraher, C.U. Pittman, J.E. Sheats, M. Zeldin (Wiley, 2004)

  20. E.W. Neuse, S. Afr. J. Sci. 95, 509 (1999)

    CAS  Google Scholar 

  21. H. Ringsdorf, J. Polym. Sci. Polym. Symp. 51, 135 (1975)

    Article  CAS  Google Scholar 

  22. H. Maeda, Adv. Drug Deliv. Rev. 6, 181 (1991), and earlier reports from this author

  23. R. Duncan, J. Kopeček, Adv. Polym. Sci. 57, 51 (1984); ibid 122, 55 (1995)

  24. H.J.-P. Ryser, W.C. Shen, in Targeting of Drugs with Synthetic Systems, ed. by G. Gregoriadis et al. (Plenum Press, 1986), p. 103

  25. C.J.T. Feijen, in Drug Carrier Systems, ed. by F.H.D. Roerdink, A.M. Kroon (Wiley, 1989), p. 57

  26. S.E. Matthews, C.W. Pouton, M.D. Threadgill, Adv. Drug Deliv. Rev. 18, 219 (1996)

    Article  CAS  Google Scholar 

  27. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, J. Control Release. 65, 271 (2000)

    Article  CAS  Google Scholar 

  28. T. Minko, P. Kopečková, J. Kopeček, Macromol. Symp. 172, 35 (2001)

    Article  CAS  Google Scholar 

  29. R. Duncan, Nat. Rev./Drug Discov. 2, 247 (2003)

    Article  CAS  Google Scholar 

  30. R.J. Christie, D.W. Grainger, Adv. Drug Deliv. Rev. 55, 421 (2003)

    Article  CAS  Google Scholar 

  31. R. Duncan, M.J. Vicent, F. Greco, R.I. Nicholson, Endocr. Relat. Cancer 12, S189 (2005)

    Article  CAS  Google Scholar 

  32. A. Nori, J. Kopeček, Adv. Drug Deliv. Rev. 57, 609 (2005)

    Article  CAS  Google Scholar 

  33. O. Hovorka, T. Etrych, V. Šubr, J. Strohalm, K. Ulbrich, B. Rihová, J. Drug Target. 14, 391 (2006)

    Article  CAS  Google Scholar 

  34. E.W. Neuse, G. Caldwell, J. Inorg. Organometal. Polym. 7, 163 (1997)

    Article  CAS  Google Scholar 

  35. E.W. Neuse, B.B. Patel, C.W.N. Mbonyana, J. Inorg. Organometal. Polym. 1, 147 (1991)

    Article  CAS  Google Scholar 

  36. G. Caldwell, E.W. Neuse, C.E.J. van Rensburg, J. Inorg. Organometal Polym. 7, 217 (1997)

    Article  CAS  Google Scholar 

  37. C.L. Luthy et al., Proc. Int. Symp. Control Rel. Bioact. Mater. 25, 132 (1998)

    Google Scholar 

  38. E. Gianasi, M. Wasil, E.G. Evagorou, A. Keddle, G. Wilson, R. Duncan, Eur. J. Cancer 35, 994 (1999)

    Article  CAS  Google Scholar 

  39. C.W.N. Mbonyana, E.W. Neuse, A.G. Perlwitz, Appl. Organometal. Chem. 7, 279 (1993)

    Article  CAS  Google Scholar 

  40. E.W. Neuse, A.G. Perlwitz, G. Caldwell, J. Inorg. Organometal. Polym. 5, 195 (1995)

    Article  CAS  Google Scholar 

  41. G. Caldwell, E.W. Neuse, A.G. Perlwitz, J. Inorg. Organometal. Polym. 7, 111 (1997)

    Article  CAS  Google Scholar 

  42. G. Caldwell, E.W. Neuse, C.E.J. van Rensburg, Appl. Organomet. Chem. 13, 189 (1999)

    Article  CAS  Google Scholar 

  43. M.T. Johnson, E.W. Neuse, C.E.J. van Rensburg, E. Kreft, J. Inorg. Organometal. Polym. 13, 55 (2003)

    Article  CAS  Google Scholar 

  44. E.W. Neuse, Macromol. Symp. 80, 111 (1994)

    CAS  Google Scholar 

  45. E.W. Neuse, Chem. Perspect. 1, 69 (2000)

    Google Scholar 

  46. B. Schechter, A. Neumann, M. Wilchek, R. Arnon, J. Control Release 10, 75 (1989)

    Article  CAS  Google Scholar 

  47. D. Avichezer, B. Schechter, R. Arnon, React. Funct. Polym. 36, 59 (1998)

    Article  CAS  Google Scholar 

  48. B. Schechter, R. Arnon, Y.E. Freedman, L. Chen, M. Wilchek, J. Drug Target. 4, 171 (1996). See also: React. Polym. 25, 167 (1995)

    Google Scholar 

  49. Y. Ohya, T. Masunaga, T. Baba, T. Ouchi, Pure Appl. Chem. A33, 1005 (1996). See also: J. Biomater. Sci. Polymer Edn. 7, 1085 (1996)

    Google Scholar 

  50. M. Nakashima et al., Biol. Pharm. Bull. 22, 756 (1999)

    CAS  Google Scholar 

  51. Y. Ohya, S. Shirakawa, M. Matsumoto, T. Ouchi, Polym. Adv. Technol. 11, 635 (2000)

    Article  CAS  Google Scholar 

  52. Y. Ohya, K. Nagatomi, T. Ouchi, Macromol. Biosci. 1, 355 (2001)

    Article  CAS  Google Scholar 

  53. Y. Ohya, H. Oue, K. Nagatomi, T. Ouchi, Biomacromolecules 2, 927 (2001)

    Article  CAS  Google Scholar 

  54. P. Neri, G. Antoni, F. Benvenuti, F. Cocola, G. Gazzai, J. Med. Chem. 16, 893 (1973)

    Article  CAS  Google Scholar 

  55. P. Neri, G. Antoni, Macromol. Synt. 8, 25 (1982)

    CAS  Google Scholar 

  56. J. Kalal, J. Drobnĭk, J. Kopeček, J. Exner, Brit. Polym. J. 10, 111 (1978)

    Article  CAS  Google Scholar 

  57. J. Drobnĭk, V. Saudek, J. Vlasák, J Kálal, J. Polym. Sci. Polym. Symp. 66, 59, 65 (1979)

    Google Scholar 

  58. J. Pytela, V. Saudek, J. Drobnĭk, F. Rypáček, J. Control Release 10, 17 (1989). See also: Ann. NY Acad. Sci. 446, 258 (1985)

    Google Scholar 

  59. F. Danusso, P. Ferruti, Polymer 11, 88 (1970)

    Article  CAS  Google Scholar 

  60. P. Ferruti, M.A. Marchisio, R. Duncan, Macromol. Rapid Commun. 23, 332 (2002), and numerous preceding papers from that group

  61. G. Caldwell, E.W. Neuse, S. Afr. J. Chem. 45, 93 (1992)

    CAS  Google Scholar 

  62. G. Caldwell, E.W. Neuse, A. Stephanou, J. Appl. Polym. Sci. 50, 393 (1993)

    Article  CAS  Google Scholar 

  63. M.L. de Machado, E.W. Neuse, A.G. Perlwitz, S. Schmitt, Polym. Adv. Technol. 1, 275 (1990)

    Article  Google Scholar 

  64. M.T. Johnson, L.L. Komane, D.D. N’Da, E.W. Neuse, J. Appl. Polym. Sci. 96, 10 (2005)

    Article  CAS  Google Scholar 

  65. C.E.J. van Rensburg, A.M. van Staaden, R. Anderson, Cancer Res. 53, 318 (1993)

    Google Scholar 

  66. J.D. Hoeschele, N. Farrell, W.R. Turner, C.D. Rithner, Inorg. Chem. 27, 4106 (1988)

    Article  CAS  Google Scholar 

  67. B. Schechter, G. Caldwell, M.G. Meirim, E.W. Neuse, Appl. Organometal. Chem. 14, 701 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The generous support of this project by the Cancer Association of South Africa in conjunction with the THRIP Project, the Medical Research Council, and the Western Platinum Refinery is gratefully acknowledged, and so is the generous donation of solvents by SASOL Ltd. and of a platinum salt by Johnson Matthey Pty. Ltd. Elie Mukaya expresses his gratitude to the Mellon Foundation for a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. W. Neuse.

Additional information

This article is dedicated to Professor Astruc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komane, L.L., Mukaya, E.H., Neuse, E.W. et al. Macromolecular Antiproliferative Agents Featuring Dicarboxylato-Chelated Platinum. J Inorg Organomet Polym 18, 111–123 (2008). https://doi.org/10.1007/s10904-007-9175-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-007-9175-7

Keywords

Navigation