Synthesis, Structure and Thermal Properties of Copper and Silver Polyynides and Acetylides

  • Franco CataldoEmail author
  • Carlo S. Casari


Polyynes or oligoynes having general formula H–(C≡C)n–H with n = 1,2,3,4,…, are a class of molecules that has become easily accessible in recent years due to new synthetic approaches. These molecules form copper and silver salts, which have been called, respectively, Cu-polyynides and Ag-polyynides. Here we show the synthesis of these salts and discuss their FT-IR spectra and thermal behaviour, which is studied by Differential Scanning Calorimetry (DSC). These properties are compared to the spectra and thermal behaviour of Cu2C2 and Ag2C2. It is shown that Cu2C2 can be oxidized to Cu-polyynides thereby loosing its original structure and becoming a polymeric coordinative structure. The structural changes make Cu-polyynides no more explosive than the parent Cu2C2. Similarly, Ag-polyynides, which decompose exothermally when heated, are not explosive compared to Ag2C2. The explosive decomposition of Cu2C2 occurs at 127 °C (DSC) whereas Ag2C2 decomposes explosively at 169 °C under the same conditions. Conversely, Cu-polyynides, when heated in the DSC, show a broad exothermal peak at about 243 °C. Ag-polyynides decompose near 94 °C and the release of energy is sufficiently gradual that no explosion is detected.


Polyynes Copper polyynides Silver polyynides Copper acetylide Silver acetylide Thermal analysis Thermal stability Decomposition Polymeric acetylides Organometallic polymers 


  1. 1.
    (a) M. Tsuji, S. Kuboyama, T. Matsuzaki, T. Tsuji, Carbon 41, 2141 (2003); (b) M. Tsuji, S. Kuboyama, T. Tsuji, in Polyynes: Synthesis, Properties and Applications, ed. by F. Cataldo (Taylor & Francis Publishing House, CRC Press, Boca Raton, Florida, 2005), Chap. 7Google Scholar
  2. 2.
    H. Tabata, M. Fuji, S. Hayashi, Carbon 44, 22 (2006)Google Scholar
  3. 3.
    (a) F. Cataldo, Carbon 42, 129 (2004). (b) F. Cataldo, Carbon 41, 2671 (2003)Google Scholar
  4. 4.
    (a) F. Cataldo, Tetrahedron Lett. 45, 141 (2004). (b) F. Cataldo, Tetrahedron 60, 4265 (2004). (c) F. Cataldo, Polyhedron 23, 1889 (2004). (d) F. Cataldo, Fullerenes, Nanot. Carbon Nanostruct. 12, 603; 619; 633; 765 (2004). (e) F. Cataldo, Fullerenes, Nanot. Carbon Nanostruct. 13, 21 (2005)Google Scholar
  5. 5.
    F. Cataldo, Polyynes: Synthesis, Properties and Applications (Taylor & Francis Publishing House, CRC Press, Boca Raton, Florida, 2005), Chap. 8, pp. 18 and 20Google Scholar
  6. 6.
    F. Cataldo, Tetrahedron Lett. 46, 3665 (2005)CrossRefGoogle Scholar
  7. 7.
    F. Cataldo, Carbon 43, 2792 (2005)CrossRefGoogle Scholar
  8. 8.
    F. Cataldo, Eur. J. Solid State Inorg. Chem. 35, 281 (1998)CrossRefGoogle Scholar
  9. 9.
    F. Cataldo, Eur. J. Solid State Inorg. Chem. 35, 293 (1998)CrossRefGoogle Scholar
  10. 10.
    F. Cataldo Polym. Int. 48, 15 (1999)CrossRefGoogle Scholar
  11. 11.
    (a) F. Cataldo, D. Capitani, Mater. Chem. Phys. 59, 225 (1999). (b) F. Cataldo, Fullerene Sci. Tech. 9, 153 (2001). (c) F. Cataldo, Carbon 37, 161 (1999)Google Scholar
  12. 12.
    E. Smith, G. Dent, Modern Raman Spectroscopy: A Practical Approach, (J. Wiley & Sons, New York 2005), Chap. 5Google Scholar
  13. 13.
    A. Lucotti, M. Tomasini, M. Del Zoppo, C. Castiglioni, G. Zerbi, F. Cataldo, C.S. Casari, A. Li Bassi, V. Russo, M. Bogana, C.E. Bottani, Chem. Phys. Lett. 417, 78 (2006)CrossRefGoogle Scholar
  14. 14.
    C. S. Casari, V. Russo, A. Li Bassi, C.E. Bottani, F. Cataldo, A. Lucotti, M. Tomasini, M. Del Zoppo, C. Castiglioni, G. Zerbi, Appl. Phys. Lett. 90, 13111 (2007)CrossRefGoogle Scholar
  15. 15.
    S. Hayashi, T. Konishi, Japan. J. Appl. Phys. 44, 5313 (2005)CrossRefGoogle Scholar
  16. 16.
    H. Tabata, M. Fujii, S. Hayashi, Chem. Phys. Lett. 420, 166 (2006)CrossRefGoogle Scholar
  17. 17.
    T. Wakabayashi, H. Tabata, T. Doi, H. Nagayama, K. Okuda, R. Umeda, I. Hisaki, M. Sonoda, Y. Tobe, T. Minematsu, K. Hashimoto, S. Hayashi, Chem. Phys. Lett. 433, 296 (2007)CrossRefGoogle Scholar
  18. 18.
    X. Zhao, Y. Ando, Y. Liu, J. Makoto, T. Suzuki, Phys. Rev. Lett. 90, 187401 (2003)CrossRefGoogle Scholar
  19. 19.
    D. Nishide, H. Dohi, T. Wakabayashi, E. Nishibori, S. Aoyagi, M. Ishida, S. Kikuchi, R. Kitaura, T. Sugai, M. Sakata, H. Shinohara, Chem. Phys. Lett. 428, 356 (2006)CrossRefGoogle Scholar
  20. 20.
    K. Judai, J. Nishijo, N. Nishi, Adv. Mater. 18, 2842 (2006)CrossRefGoogle Scholar
  21. 21.
    S. Szafert, J. Gladysz, Chem. Rev. 103, 4175 (2003)CrossRefGoogle Scholar
  22. 22.
    (a) H. Bauer, J. Faust, R. Frobose, J. Fussel, U. Kruerke, M. Kunz, H.M. Somer, Gmellin Handbook of Inoganic Chemistry, 8th Edition, Cu Organocopper Compounds, Part 4, System Number 60, (Springer-Verlag, Berlin, 1987). (b) Gmellin Handbuch der Anorganischen Chemie, Kupfer, Teil B, Lieferung 2, System- Nummer 60, (Verlag Chemie, Weinheim, 1961)Google Scholar
  23. 23.
    R. Nast, W. Pfab, Z. Anorg Allgem. Chem. 292, 287 (1957)CrossRefGoogle Scholar
  24. 24.
    R. Klement, E. Koddermann-Gros, Z. Anorg. Allgem. Chem. 254, 201 (1947)Google Scholar
  25. 25.
    W.C. Easterbrook, J.W. Erskine, J. Appl. Chem. Suppl. 1, S53 (1953)Google Scholar
  26. 26.
    R. Keim, H. Bergmann, H. Bitterer, A. Bohne-Neuber, V. Haase, B. Haibel, G. Kirschstein, H.K. Kugler, S. Ruprecht, Gmellins Handbuch der Anorganischen Chemie, Silber, Teil B3, System-Nummer 61, (Verlag Chemie, Weinheim, 1973)Google Scholar
  27. 27.
    J.D. McCowan, Trans. Faraday Soc. 59, 1860 (1965)CrossRefGoogle Scholar
  28. 28.
    K. Vatsouro, G. Michtchenko, Reactions Organiques Clasées par Auteurs (Mir Editions, Moscow, 1981). Google Scholar
  29. 29.
    L. Fomina, B. Vasquez, E. Tkatchouk, S. Fomine, Tetrahedron 58, 6741 (2002)CrossRefGoogle Scholar
  30. 30.
    M. Avram, G.D. Mateescu, Infrared Spectroscopy Applications in Organic Chemistry. (Wiley-Interscience, New York, 1972), p. 196–200Google Scholar
  31. 31.
    (a) F. Cataldo, Polym. Int. 44, 191 (1997). (b) F. Cataldo, Eur. J. Solid State Inorg. Chem. 34, 53 (1997)Google Scholar
  32. 32.
    (a) F. Cataldo, J. Mater. Sci. 35, 2413 (2000). (b) F. Cataldo, Angew. Makromol. Chem. 264, 65 (1999)Google Scholar
  33. 33.
    F. Cataldo, Fullerene Sci. Tech. 9, 525 (2001)Google Scholar
  34. 34.
    S.J. Shieh, X. Hong, S.M. Peng, C.M. Che, J. Chem. Soc. Dalton Trans. 3067 (1994)Google Scholar
  35. 35.
    D.M.P. Mingos, J. Yau, S. Menzer, D.J. Williams, Angew. Chem. Int. Ed. Engl. 34, 1894 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Lupi Chemical ResearchRomeItaly
  2. 2.Dipartimento di Ingegneria NucleareNEMAS-Center for NanoEngineered Materials and Surfaces, Politecnico di MilanoMilanoItaly

Personalised recommendations