Advertisement

The Biocompatibility of Biodegradable Glycine Containing Polyphosphazenes: A Comparative study in Bone

  • Saadiq F. El-Amin
  • Michael S. Kwon
  • Trevor Starnes
  • Harry R. Allcock
  • Cato T. LaurencinEmail author
Article

Abstract

Polyphosphazenes have gained considerable attention as biomaterials for use in tissue engineering and orthopaedic reconstruction. In this paper we examined the polyphosphazenes’ in vivo biocompatibility and degradation by studying their ability to repair bone in a rabbit metaphyseal distal femur defect model. Matrices constructed from poly[(50% p-methylphenoxy)-(50%ethyl glycinato) phosphazene] (PPHOS-50) and poly[bis(ethyl glycinato) phosphazene] (PPHOS-100), were surgically implanted into a metaphyseal rabbit defect of the distal femur as constructs for tissue regeneration. Poly(lactide-co-glycolide) (PLAGA) implants, which are the biodegradable polymers most widely used clinically, and defects without polymers were used as controls in this experiment. Histological studies demonstrated that both PPHOS-50 and PPHOS-100 appeared to support bone growth comparable to the control PLAGA. By 12 weeks, femurs with polyphosphazene implants showed evidence of bone in-growth and a mild fibrous response. The PPHOS-50 implants were found to have a local tissue response that was more favorable than PPHOS-100 and similar to PLAGA. Biodegradable polyphosphazenes are a novel class of polymers which have been observed to facilitate bone growth in vivo.

Keywords

biocompatibility, bone, polymer, polyphosphazenes, osteoblast, biodegradable 

References

  1. 1.
    M. Chasin, A. Domb, E. Ron, E. Mathiowitz, K. Leong, C. T. Laurencin, H. Brem, S. Grossman and R. Langer (1990) in Chasin M., Langer R. (eds.) Biodegradable Polymers as Drug Delivery Systems, (Marcel Dekker Inc., New York)Google Scholar
  2. 2.
    Mills S. N. and S. S. Davis (1987) Cont. Drug Delivery, (IOP Publishing Limited, Bristol)Google Scholar
  3. 3.
    Heller J., Sparer R. V., Zenter G. M. (1990) in Chasin M., Langer R. (eds.) Biodegradable Polymers as Drug Delivery Systems, (Marcel Dekker Inc., New York)Google Scholar
  4. 4.
    Allcock H. R., Fuller R. J., Mack D. P., Matsumura K., Smeltz K. M. (1977) Macromolecules 10 824CrossRefGoogle Scholar
  5. 5.
    Piecuch JF J. F., Fedorka N. J. (1983) J. Oral & Maxillofacial Surg. 41(12) 801Google Scholar
  6. 6.
    Metsger D. S., Driskell T. D., Paulsrud J. R. (1982) J. Am. Dental Assoc. 105(6) 1035Google Scholar
  7. 7.
    Singh H., Vasudevan P., Misro M., Ray A. R., Guha S. K. (1982) J. Biomed. Mat. Res. 16(1) 3CrossRefGoogle Scholar
  8. 8.
    Sodian R., Sperling J. S., Martin D. P., Egozy A., Stock U., Mayer J. E., Vacanti J. P. (2000) Tissue Engineering 6(2) 183CrossRefGoogle Scholar
  9. 9.
    Bryan D. J., Holway A. H., Wang K. K., Silva A. E., Trantolo D. J., Wise D., Summerhayes I. C. (2000) Tissue Engineering 6(2) 129CrossRefGoogle Scholar
  10. 10.
    Hadlock T., Singh S., Vacanti J. P., McLaughlin B. J. (1999) Tissue Engineering 5(3) 187CrossRefGoogle Scholar
  11. 11.
    Williams, D.F. (Eds), Definitions in Biomaterials: Proceedings of a Consensus Conference of the European Society of Biomaterials, Chester, England, March 3–5 (Elsevier, Amsterdam,1986)Google Scholar
  12. 12.
    Carnesale P. L., Spankus J. D. (1961) J. Bone Joint Surg. 41A 887Google Scholar
  13. 13.
    Younger E. M., Chapman M. W. (1989) J. Orthop. Trauma 3 192CrossRefGoogle Scholar
  14. 14.
    Gazdag A. R., Lane J. M., Glaser D., Forster R. A. (1995) J. Am. Acad. Orthop. Surg. 3 1Google Scholar
  15. 15.
    Garbuz D. S., Marsi B. A., Czitrom A. A. (1998) Clin. North Am 29 199Google Scholar
  16. 16.
    Fleming J. E. Jr., Cornell C. N., Muschler G. F. (2000) Orthop. Clin. North Am. 31 357CrossRefGoogle Scholar
  17. 17.
    Vacanti C. A., Vacanti J. P. (2000) Orthop. Clin. North Am. 31(3) 351CrossRefGoogle Scholar
  18. 18.
    Cornell C. N. (1999) Orthop. Clin. North Am. 30(4) 591CrossRefGoogle Scholar
  19. 19.
    Laurencin C. T., El-Amin S. F., Ibim S. E., Willoughby D. A., Attawia M., Allcock H. R., Ambrosio A. A. (1996) J. Biomed. Mat. Res. 30 133CrossRefGoogle Scholar
  20. 20.
    Allcock H.R. (2003) Chemistry and application of polyphosphazenes. New York WileyGoogle Scholar
  21. 21.
    Laurencin C. T., Norman M. E., Elgendy H. M., El-Amin S. F., Allcock H. R., Pucher S. R., Ambrosio A. A. (1993) J. Biomed. Mat. Res. 27 963CrossRefGoogle Scholar
  22. 22.
    Crommen J. H., Schacht E. H., Mense E. H. (1992) Biomaterials 13(9) 601CrossRefGoogle Scholar
  23. 23.
    Ibim S. M., Uhrich K. E., Bronson R., El-Amin S. F., Langer R. S., Laurencin C. T. (1998) Biomaterials 19 941CrossRefGoogle Scholar
  24. 24.
    Allcock H. R., Gebura M., Kwon S., Neenan T. X. (1988) Biomaterials 9 500CrossRefGoogle Scholar
  25. 25.
    Allcock H. R., Kwon S., Riding G. H., Fitzpatrick R. J., Bennett J. L. (1988) Biomaterials 9 509CrossRefGoogle Scholar
  26. 26.
    Goedemoed J. H., deGroot K., Claessen A. M. E., Scheper R. J. (1991) J. Cont. Rel. 17 235CrossRefGoogle Scholar
  27. 27.
    Goedemoed J. H., Mense E. H. G., deGroot K., Claessen A. M. E., Scheper R. J. (1991) J. Cont. Rel. 17 245CrossRefGoogle Scholar
  28. 28.
    Allcock H. R., Fuller T. J., Matsumura K. (1982) Inorganic Chemistry 21 515CrossRefGoogle Scholar
  29. 29.
    Goedemoed J. H., deGroot K. (1988) Makromol. Chem. Makromol. Symp. 19 342Google Scholar
  30. 30.
    Grollman C. W. J., de Visser A. C., Wolke J. G. C., Van der Goot H., Timmerman H. (1986) J. Cont. Rel. 3 143CrossRefGoogle Scholar
  31. 31.
    Ibim S. M., Uhrich K. E., Attawia M., Shastri V. R. El-Amin S. F., Bronson R., Langer R., Laurencin C. T. (1998) J. Biomed. Mater. Res. 43 374CrossRefGoogle Scholar
  32. 32.
    Sethuraman S., Nair L. S., El-Amin S. F., Farrar R., Nguyen M. N., Singh A., Allcock H. R., Greish Y. E., Brown P. W., Laurencin C. T. (2006) J. Biomed. Mat. Res. 77A 679CrossRefGoogle Scholar
  33. 33.
    Wade C. W. R., Gourlay S., Rice R., Hegyeli A., Singler R., White J. (1978) In Carraher C. E., Sheats J. E., Pittman C. U. (Eds), Organometallic Polymers. Academic Press, New York, 289Google Scholar
  34. 34.
    Lakshmi S., Katti D. S., Laurencin C. T. (2003) Advance Drug Delivery Reviews 55 467CrossRefGoogle Scholar
  35. 35.
    Ambrosio A. A., Allcock H. R., Katti D. S., Laurencin C. T. (2002) Biomaterials 23 1667CrossRefGoogle Scholar
  36. 36.
    Jain J.P., Modi S., Domb A.J., Kumar N. (2005) J. Cont. Rel. 103 541CrossRefGoogle Scholar
  37. 37.
    Ibim S. M., El-Amin S. F., Goad M. E., Ambrosio A. A., Allcock H. R., Laurencin C. T. (1998) Pharm. Develop. Tech. 3(1) 55Google Scholar
  38. 38.
    Ibim S. M., Ambrosio A. A., Larrier D., Allcock H. R., Laurencin C. T. (1996) J. Cont. Rel. 40 31CrossRefGoogle Scholar
  39. 39.
    Katti D. S., Lakshmi S., Langer R., Laurencin C. T. (2002) Adv. Drug Deliv. Rev. 54 933CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Saadiq F. El-Amin
    • 1
  • Michael S. Kwon
    • 1
  • Trevor Starnes
    • 1
  • Harry R. Allcock
    • 2
  • Cato T. Laurencin
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of Orthopaedic SurgeryUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of ChemistryPennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleUSA
  4. 4.Department of Chemical EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations