Skip to main content
Log in

Gas Diffusion and Solubility in Poly(organophosphazenes): Results of Molecular Simulation Studies

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A combination of quantum chemistry, molecular dynamics, and Monte Carlo methods have been used to investigate gas diffusion and solubility in three isomeric poly[di(butoxyphosphazenes)] and in amorphous and crystalline states of poly[bis(2,2,2-trifluoroethoxyphosphazene)] (PTFEP). In this review of recently published studies reported from our laboratory, conclusions are reached in regards to the relationship between polymer structure and gas diffusion and sorption in poly(organophosphazenes). These conclusions also serve to validate our current understanding of the nature of gas transport in other polymers. Specifically, gas diffusivity has been shown to increase with increasing side-chain and main-chain mobility as determined from vectorial autocorrelation function analysis; however, high diffusivity is accompanied by a loss in diffusive selectivity resulting in decreasing permselectivity with increasing permeability. Simulation of crystalline supercells of PTFEP indicate that gas diffusion is unrestricted in the crystalline state as has been reported only for a few other polymers, principally poly(4-methyl-1-pentene). Gas solubility in poly(organophosphazenes) correlates well with gas condensability as measured by the Lennard–Jones potential well depth parameter, ɛ/k. Exceptions are cases where specific interactions can occur between gas molecules and the polymer chain such as is the case of CO2 and PTFEP. High-level ab initio calculations of the interaction of CO2 with low-molecular-weight fluoroalkanes indicate the presence of a weak quadrupole–dipole interaction. Association of CO2 with the trifluoromethyl groups of the trifluoroethoxy side chain of PTFEP has been confirmed by radial distribution function (RDF) analysis of MD trajectories. Comparison between solubility coefficients obtained from Grand Canonical Monte Carlo (GCMC) simulations of amorphous cells with experimental values of microcrystalline PTFEP indicates that gas solubility in polyphosphazenes such as PTFEP that exhibit a mesophase/crystalline state is greatly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

References

  1. Singler R. E., Schneider N. S., Hagnauer G. L.(1975) Polym. Eng. Sci. 15:321

    Article  CAS  Google Scholar 

  2. Potin P., de Jaeger R.(1991) . Eur. Polym. J. 27:341

    Article  CAS  Google Scholar 

  3. Allcock H. R.(1992) . J. Inorg. Organometallic Polym. 2:197

    Article  CAS  Google Scholar 

  4. Allcock H. R., Nelson C. J., Coggio W. D., Manners I., Koros W. J., Walker D. R. B., Pessan L.A.(1993) . Macromolecules 26:1493

    Article  CAS  Google Scholar 

  5. Allcock H. R.(2002) Chemistry and Applications of Polyphosphazenes. John Wiley & Sons, Inc., New York

    Google Scholar 

  6. Gleria M., Bertani R., Jaeger R. D.(2004) . J. Inorg. Organometallic Polym. 14:1

    Article  CAS  Google Scholar 

  7. Mark J. E., Allcock H. R., West R.(2005), Inorganic Polymers, 2nd ed., Oxford University Press, New York

    Google Scholar 

  8. Allcock H. R.(1994) . ACS Symp. Ser. 572:208

    Article  CAS  Google Scholar 

  9. Drioli E., Zhang S.-M., Basile A., Golemme G., Gaeta S. N., Zhang H.-C.(1991) . Gas Sep. Purif. 5:252

    Article  CAS  Google Scholar 

  10. Mizoguchi K., Kamiya Y., Hirose T.(1991) . J. Polym. Sci.: Part B: Polym. Phys. 29:695

    Article  CAS  Google Scholar 

  11. Hirose T., Mizoguchi K.(1991) . J. Appl. Polym. Sci. 43:891

    Article  CAS  Google Scholar 

  12. Peterson E. S., Stone M. L.(1994) . J. Membr. Sci. 86:57

    Article  CAS  Google Scholar 

  13. Starannikova L. E., Tur D. R., Teplyakov V. V., Platé N. A.(1994) . Polym. Sci. 36:1610

    Google Scholar 

  14. Wisian-Neilson P., Wu G.-F.(1996) . Macromolecules 29:3457

    Article  CAS  Google Scholar 

  15. Orme C. J., Harrup M. K., Luther T. A., Lash R. P., Houston K. S., Weinkauf D. H., Stewart F. F.(2001) . J. Membr. Sci. 186:249

    Article  CAS  Google Scholar 

  16. Orme C. J., Klaehn J. R., Stewart F. F.(2004) . J. Membr. Sci. 238:47

    Article  CAS  Google Scholar 

  17. Golemme G., Drioli E.(1996) . J. Inorg. Organometallic Polym. 6:341

    Article  CAS  Google Scholar 

  18. M. A. Kraus and M. K. Murphy, U.S. Patent 4,710,204, Dec. 1, 1987

  19. Robeson L. M. (1991) . J. Membr. Sci. 62:165

    Article  CAS  Google Scholar 

  20. Robeson L. M., Burgoyne W. F., Langsam M., Savoca A. C., Tien C. F.(1994) . Polymer 35:4970

    Article  CAS  Google Scholar 

  21. Freeman B. D.(1999). Macromolecules 32:375

    Article  CAS  Google Scholar 

  22. Fried J. R., Goyal D. K.(1998) . J. Polym. Sci.: Part B: Polym. Phys. 36:519

    Article  CAS  Google Scholar 

  23. Kajiwara M.(1988) . J. Mater. Sci. Lett. 7:102

    Article  CAS  Google Scholar 

  24. Kajiwara M.(1988) . J. Mater. Sci. 23:1360

    Article  CAS  Google Scholar 

  25. Kajiwara M.(1991) . Sep. Sci. Technol. 26:841

    CAS  Google Scholar 

  26. Stern S.A.(1994), J. Membr. Sci. 94:1

    Article  Google Scholar 

  27. Hirose T., Kamiya Y., Mizoguchi K.(1989) . J. Appl. Polym. Sci. 38:809

    Article  CAS  Google Scholar 

  28. Kojima M., Magill J.H.(1985). Polymer 26:1971

    Article  CAS  Google Scholar 

  29. Kojima M., Magill J.H.(1984) . Polymer Commun. 25: 273

    CAS  Google Scholar 

  30. van Mourik P., Veldman E., Norder B., van Turnhout J., Wübbenhorst M.(2005) . J. Mater. Sci. 40:1661

    Article  CAS  Google Scholar 

  31. Fried J. R., Ren P.(1999) . Comput. Theor. Polym. Sci. 9:111

    Article  CAS  Google Scholar 

  32. Allen G., Lewis C. J., Todd S. M.(1970) . Polymer 11:44

    Article  CAS  Google Scholar 

  33. Allcock H. R., Kugel R. L., Valan K. J.(1966) . Inorg. Chem. 5:1709

    Article  CAS  Google Scholar 

  34. Teplyakov V., Meares P.(1990) . Gas Sep. Purif. 4:66

    Article  CAS  Google Scholar 

  35. Stern S.A., Shah V.M., Hardy B.J.(1987) . J. Polym. Sci.: Part B: Polym. Phys. 25:1263

    Article  CAS  Google Scholar 

  36. Yampol’skii Y. P., Bespalova N. B., Finkel’shtein E. S., Bondar V. I., Popov A. V.(1994) . Macromolecules 27:2872

    Article  CAS  Google Scholar 

  37. Fried J. R., Ren P.(2000) . Comput. Theor. Polym. Sci. 10:447

    Article  CAS  Google Scholar 

  38. Fried J. R., Hu N.(2003) . Polymer 44:4363

    Article  CAS  Google Scholar 

  39. Hu N., Fried J. R.(2005) . Polymer 46:4330

    CAS  Google Scholar 

  40. J. R. Fried, in Materials Science of Membranes for Gas and Vapor Separations, Y. Yampolskii, I. Pinnau and B. D. Freeman, eds. (John Wiley & Sons Ltd., London, 2006), pp. 95–136

  41. Sun H.(1998) . J. Phys. Chem. B 102:7338

    Article  CAS  Google Scholar 

  42. Hwang M. J., Stockfisch T. P., Hagler A. T.(1994) . J. Am. Chem. Soc. 116:2515

    Article  CAS  Google Scholar 

  43. Maple J. A., Hwang M. J., Stockfisch T. P., Dinur U., Waldman M., Ewig C. S., Hagler A.T.(1994) . J. Comput. Chem. 15:162

    Article  CAS  Google Scholar 

  44. Sun H., Ren P., Fried J. R.(1998) . Comput. Theor. Polym. Sci. 8:229

    Article  CAS  Google Scholar 

  45. Einstein A.(1905) . Ann. Phys. (Leipzig) 17:549

    CAS  Google Scholar 

  46. S. Trohalaki, A. Kloczkowski, J. E. Mark, D. Rigby, and R. J. Roe, in Computer Simulation of Polymers, R. J. Roe, ed. (Prentice Hall, Englewood Cliffs, 1991), p. 220

  47. Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A.H., Teller E.(1953) . J. Chem. Phys. 21:1087

    Article  CAS  Google Scholar 

  48. Müller-Plathe F.(1994) . Acta Polym. 45:259

    Article  Google Scholar 

  49. Fan C. F., Cagin T., Shi W., Smith K. A.(1997) . Macromol. Theory Simul. 6:83

    Article  CAS  Google Scholar 

  50. Yang J., Ren Y., Tian A.-m., Sun H.(2000) . J. Phys. Chem. B 104:4951

    Article  CAS  Google Scholar 

  51. Puleo A. C., Paul D. R., Wong P. K.(1989) . Polymer 30:1357

    Article  CAS  Google Scholar 

  52. Tsujita Y.(2000) . Chinese J. Polym. Sci. 18:301

    CAS  Google Scholar 

  53. Young S. G., Kojima M., Magill J. H., Lin F.T.(1992) . Polymer 33:3215

    Article  CAS  Google Scholar 

  54. Tur D. R., Provotorova N. P., Vinogradova S. V., Bakhmutov V. I., Galakhov M. V., Zhukov V. P., Dubovik I. I., Tsvankin D. J., Papkov V.S.(1991) . Makromol. Chem. 192:1905

    Article  CAS  Google Scholar 

  55. Michaels A. S., Bixler H. J.(1961) . J. Polym. Sci. 50:393

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support from the Ohio Board of Regents Investment Fund and the National Science Foundation, Division of Chemical and Transport Systems, Interfacial, Transport, and Separation (CTS-9810320) is gratefully acknowledged. The author also wishes to recognize the significant contributions of two former students, Drs. Pengyu Ren and Naiping Hu, whose work has been reviewed in this communication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel R. Fried.

Additional information

This paper is dedicated to Prof. Harry Allcock for his scientific contributions to inorganic and organometallic polymers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fried, J.R. Gas Diffusion and Solubility in Poly(organophosphazenes): Results of Molecular Simulation Studies. J Inorg Organomet Polym 16, 407–418 (2006). https://doi.org/10.1007/s10904-006-9059-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-006-9059-2

Keywords

Navigation