Skip to main content
Log in

Preparation of High Photoluminescent Hybrid Polymer-CdS Nanoparticle with Chelating Functional Polymer

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

An Erratum to this article was published on 07 February 2007

The hybrid CdS nanocluster/chelating poly(acrylates-co-2-methylacrylic acid 3-(bis-carboxymethylamino)- 2-hydroxy-propyl ester) microbeads were prepared and characterized in this study. The copolymer microbead was prepared by the method of soap-free emulsion polymerization and then the CdS nanocluster was generated by the chemical deposition method on the surface of copolymer microbead. The size and morphology of the CdS nanoparticles on the surface of the hybrid composites were examined by using UV/vis spectroscope and TEM observation. The mean particle sizes of the CdS nanocluster for all of samples, calculated from Henglein’s empirical curve, is in the range of 3.3 ∼ 5.8 nm, which are approaching to TEM observation. Interestingly, most of the spherical CdS nanoclusters were aggregated in rod-like shapes with a length of around 200 nm when it was oscillated by super sonic energy. Furthermore, the luminescent spectrum of the hybrid nanoparticles exhibits a red-shift from 500 to 520 nm with an accompanying broad band. However, the energy and bandwidth of the CdS PL bands are related to the mole ratio of methyl methacrylate/methyl acrylate (MMA/MA) in copolymer. A higher MMA/MA mole ratio corresponds to a lower intensity and bandwidth. Additionally, in the size quantization effect of the CdS nanocluster disappears as the mean size of the CdS nanocluster exceeds 6 nm in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Scheme 1.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

References

  1. Farmer S., Pattern T. E. (2001). Chem. Mater. 13: 3920

    Article  CAS  Google Scholar 

  2. Zhao H., Douglas E. P., Harrison B. S., Schanze K. S. (2001). Langmuir 17: 8428

    Article  CAS  Google Scholar 

  3. Wang D., Cao Y., Zhang X., Liu Z., Qian X., Ai X., Liu F., Wang D., Bai Y., Li T., Tang X. (1999). Chem. Mater. 11: 392

    Article  CAS  Google Scholar 

  4. Carrot G., Scholz S. M., Plummer C. J. G., Hilborn J. G., Hedrick J. L. (1999). Chem. Mater. 11: 3571

    Article  CAS  Google Scholar 

  5. Holtz J. H., Asher S. A. (1997). Nature 389: 829

    Article  CAS  Google Scholar 

  6. Swick B. J., Kalinina O., Kumacheva E., Miller R. J. D., Noolandi J. (2001). J. Appl. Phys. 90: 5328

    Article  Google Scholar 

  7. Zhang J., Coombs N., Kumacheva E. (2002). J. Am. Chem. Soc. 124: 14512

    Article  CAS  Google Scholar 

  8. Susha A. S., Caruso F., Rogach A. L., Sukhorukov G. B., Kornowski A., Mohwald H., Giersig M., Eychmuller A., Weller H. (2000). Coll. & Surf. A: Phys. Chem. Eng. Asp. 163: 39

    Article  CAS  Google Scholar 

  9. Zhang J., Coombs N., Kumacheva E., Lin Y., Sargent E. H. (2002). Adv. Mater. 14: 1756

    Article  CAS  Google Scholar 

  10. Kim K. J., Shahinpoor M. (2002). Proc. SPIE – The Inter. Soc. Opt. Eng. 4695: 210

    CAS  Google Scholar 

  11. Wang P. H., Wu Y. Z., Zhu Q. R. (2002). J. Mat. Sci. Let. 21(23): 1825

    Article  CAS  Google Scholar 

  12. Park J. G., Kim J. W., Oh S. G., Suh K. D. (2002). J. Appl. Polym. Sci. 87(3): 420

    Article  Google Scholar 

  13. Yu S. H., Yoshimura M., Moreno J. M. C., Fujiwara T., Fujino T., Teranishi R. (2001). Langmuir 17: 1700

    Article  CAS  Google Scholar 

  14. Wang C. C., Chang C. C., Chen C. Y. (2001). Macromol. Chem. Phys. 202: 882

    Article  CAS  Google Scholar 

  15. Wang C. C., Cheng M. H., Chen C. Y., Chen C. Y. (2002). J. Membr. Sci. 208: 133

    Article  CAS  Google Scholar 

  16. Chu Y. C., Wang C. C., Chen C. Y. (2005). J. Memb. Sci. 247(1–2): 201

    Article  CAS  Google Scholar 

  17. Henglein A. (1989). Chem. Rev. 89: 1861

    Article  CAS  Google Scholar 

  18. Spanhel L., Hoasse M., Weller H., Henglein A. (1987). J. Am. Chem. Soc. 109: 5649

    Article  CAS  Google Scholar 

  19. Vossmeyer T., Katsikas L., Giersig M., Popovic I. G., Siesner K., Chemseddine A., Eychmuller A., Weller H. (1994). J. Phys. Chem. 98: 7665

    Article  CAS  Google Scholar 

  20. Wu S. D., Zhu Z., Zhang Z., Zhang L. (2002). Mat. Sci. Eng. B90: 206

    CAS  Google Scholar 

  21. Zeng J. H., Zhu Y., Liu Y. F., Yang J., Qian Y. T., Zheng H. G. (2002). Mat. Sci. and Eng. B94: 131

    CAS  Google Scholar 

  22. Lakowicz J. R., Gryczynski I., Gryczynski Z., Murphy C. J. (1999). J. Phys. Chem. B 103: 7613

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of this research by the National Science Council of the Republic of China under Contract No. NSC93-2216-E-218-001- is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Chien Wang.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10904-007-9102-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CC., Chen, AL. & Chen, IH. Preparation of High Photoluminescent Hybrid Polymer-CdS Nanoparticle with Chelating Functional Polymer. J Inorg Organomet Polym 16, 31–41 (2006). https://doi.org/10.1007/s10904-006-9033-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-006-9033-z

Keywords

Navigation