Skip to main content
Log in

Carbon Subsulphide Polymer (C3S2) X Formation by Arcing Carbon disulphide with the Submerged Carbon Arc

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

An Erratum to this article was published on 06 February 2007

Summary

Arcing of liquid carbon disulphide between graphite electrodes at  − 80 °C produces elemental sulphur, carbon subsulphide (C3S2) having the structure S=C=C=C=S, and three other molecular species whose structure remains unassigned. The results were obtained by liquid chromatography (HPLC) equipped with a diode array detector. No polyynes were detected by HPLC although they form in other solvents by arcing graphite electrodes. It has been proposed that carbon subsulphide is obtained from the interaction between carbon monosulphide (C=S) formed from the plasmalysis of CS2 with C2 vapour released by the graphite electrodes. C3S2 has been identified in the arced CS2 solution from its characteristic FT-IR absorption bands at 2059 and 1019 cm−1. During warm-up from  − 80 °C to room temperature, the red CS2 solution with C3S2 becomes dark brown and a polymeric product, polycarbon subsulphide (C3S2) X , separates. This polymerization reaction was followed spectroscopically for the first time showing that the disappearance of the characteristic C3S2 FT-IR bands are accompanied by the appearance of typical carbon subsulphide polymer bands. The FT-IR spectrum of the polymeric product confirms that it is essentially composed by (C3S2) X , although (CS2) X polymer is also identified as minor component. The FT-IR spectrum of the polymeric product does not appear significantly different from the spectra of the polymeric products obtained from photolysis, radiolysis, and sonolysis of CS2. The thermal behaviour of the polymeric product obtained from arcing CS2 has been studied by differential scanning calorimetry in static air. No melting point and other transitions are detected until 536 K; at 543 K a sharp exothermal transition occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Scheme 1A.
Fig. 4.
Scheme 1B.
Fig. 5.

Similar content being viewed by others

References

  1. Dunn A. D. (1989). Carbon Disulphide in Organic Chemistry. Ellis Horwood Ltd, Chichester

    Google Scholar 

  2. A. M. Smith, T. P. Stecher and L. Casswell, Astrophys. J. 242, 402 (1980).

    Article  CAS  Google Scholar 

  3. J. D. Crovisier, D. Despois, D. P. Boklee-Morvan, P. Colom and G. Paubert, Icarus 93, 246 (1991).

    Article  CAS  Google Scholar 

  4. N. Biver Science 275, 1915 (1997).

    Article  CAS  Google Scholar 

  5. R. Meier and M. F. A’Hearn, Icarus 25, 64 (1997).

    Google Scholar 

  6. K. Zahnle, M. M. Mac Low, K. Lodders and B. Fegley, Geophys. Res. Lett. 22, 1593 (1995).

    Article  CAS  Google Scholar 

  7. D. Heymann, F. Cataldo, M. H. Thiemens, R. Fokkens, N. M. M. Nibbering and R. D. Vis, Meteorit. Planet. Sci. 35, 355 (2000).

    Article  CAS  Google Scholar 

  8. E. F. Van Dishoeck, G. A. Blacke, B. T. Draine and J. I. Lunine, in Protostars & Planets III E.H. Levy, J.I. Lunine and M.S. Matthews, eds. pp. 163-241 (Univ. of Arizona Press, Tucson, Arizona, USA, 1993).

  9. E. G. Butcher, M. Aslop, J. A. Weston and H. A. Gebbie, Nature 199, 756 (1963).

    Article  CAS  Google Scholar 

  10. A. G. Gaydon, G. H. Kimbell and H. H. Palmer, Proc. Roy. Soc. A279, 313 (1964).

    Google Scholar 

  11. F. Cataldo and D. Heymann, Eur. J. Solid State Inorg. Chem. 35, 619 (1998).

    Article  CAS  Google Scholar 

  12. F. Cataldo, Inorg. Chim. Acta 232, 27 (1995).

    Article  CAS  Google Scholar 

  13. J. J. Colman, X. Xu, M. H. Thiemens and W. C. Trogler, Science 273, 774 (1996).

    Article  CAS  Google Scholar 

  14. F. Cataldo, Radiat. Phys. Chem. 58, 217 (2000).

    Article  CAS  Google Scholar 

  15. F. Cataldo and D. Heymann, Radiat. Phys. Chem. 61, 115 (2001).

    Article  CAS  Google Scholar 

  16. F. Cataldo, Carbon 42, 129 (2004).

    Article  CAS  Google Scholar 

  17. F. Cataldo, Tetrahedron Lett. 45, 141 (2004).

    Article  CAS  Google Scholar 

  18. F. Cataldo, Tetrahedron 60, 4265 (2004).

    Article  CAS  Google Scholar 

  19. F. Cataldo, Fullerenes, Nanot. Carbon Nanostruct. 13, 21 (2005).

    Article  CAS  Google Scholar 

  20. F. Cataldo, Polyhedron 23, 1889 (2004).

    Article  CAS  Google Scholar 

  21. F. Cataldo, Int. J. Astrobiol. 3, 237 (2004).

    Article  CAS  Google Scholar 

  22. E. Herbst, Annu. Rev. Phys. Chem. 46, 27 (1995).

    Article  CAS  Google Scholar 

  23. V. D. Gordon, M. C. McCarthy, A. J. Apponi and P. Thaddeus, Astrophys. J. Suppl. 138, 297 (2002).

    Article  CAS  Google Scholar 

  24. V. D. Gordon, M. C. McCarthy, A. J. Apponi and P. Thaddeus, Astrophys. J. Suppl. 134, 311 (2001).

    Article  CAS  Google Scholar 

  25. H. Wang, J. Szczepanski, P. Brucat and M. Vala, Int. J. Quantum Chem. 102, 795 (2005).

    Article  CAS  Google Scholar 

  26. H. Wang, J. Szczepanski, P. Brucat and M. Vala, Int. J. Quantum Chem. 102, 806 (2005).

    Article  CAS  Google Scholar 

  27. H. Wang, J. Szczepanski, P. Brucat and M. Vala, J. Phys. Chem. A 107, 10925 (2003).

    Google Scholar 

  28. F. Cataldo (ed.) (2005) Polyynes: Synthesis Properties and Applications. CRC Press (Taylor & Francis Publishing Group, Boca Raton, FL).

    Google Scholar 

  29. A. O. Diallo, Compt. Rend. Acad. Sci. Paris C261, 5386 (1965).

    Google Scholar 

  30. W. Stadlbauer and Th. Kappe, Chem. Zeit. 101, 137 (1977).

    CAS  Google Scholar 

  31. A. O. Diallo, Compt. Rend. Acad. Sci. Paris C263, 1200 (1966).

    Google Scholar 

  32. R. Steudel, Z. Anorg. Allgem. Chem 361, 180 (1968).

    Article  CAS  Google Scholar 

  33. E. K. Moltzen, K. J. Klabunde and A. Senning, Chem. Rev. 88, 391 (1988).

    Article  CAS  Google Scholar 

  34. F. Cataldo, Fullerenes, Nanot. Carbon Nanostruct. 13, 21 (2005).

    Article  CAS  Google Scholar 

  35. H. Von Hintenberger, J. Franzen and K. D. Schuy, Z. Naturforschung A 18, 1236 (1963).

    Google Scholar 

  36. T. Carofiglio, L. Pandolfo and G. Paiaro, Eur. Polym. J. 22, 491 (1986).

    Article  CAS  Google Scholar 

  37. E. Whalley, Can. J. Chem. 38, 2105 (1960).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Cataldo.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10904-007-9104-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cataldo, F. Carbon Subsulphide Polymer (C3S2) X Formation by Arcing Carbon disulphide with the Submerged Carbon Arc. J Inorg Organomet Polym 16, 15–24 (2006). https://doi.org/10.1007/s10904-006-9031-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-006-9031-1

Keywords

Navigation