Structural Pitstops and Turnoffs on the Way to the Birefringent 2-D Layer Structure \(\{\hbox{(tmeda)M[Hg(CN)}_{2}]_{2}\}[\hbox{HgCl}_{4}]\) (M=Cu, Ni)

  • Neil D. Draper
  • Michael J. Katz
  • Raymond J. Batchelor
  • Daniel B. Leznoff
Article

Abstract

The reaction of N,N,N′,N′-tetramethylethylenediamine (tmeda) and NiCl2 with the soft, Lewis acidic Hg(CN)2 and HgCl2 in ethanol formed the 2-D layer structure {(tmeda)Ni[Hg(CN)2]2}[HgCl4] (1), isostructural to the Cu(II) analogue. Complex 1 crystallizes in the tetragonal, non-centric \(P \overline{4} {\text{ }}2_{1}\) m space group and contains a 2-D cationic layer of {(tmeda)Ni[Hg(CN)2]2}2+ units in which the six-coordinate Ni(II) centres are bridged by four Hg(CN)2 groups and capped by a tmeda ligand. This array is interspersed with a layer of [HgCl4]2− anions, which form bridging Hg–Cl bonds with the Hg(CN)2 units. The formation of 1 is very sensitive to reaction conditions; the addition of water to the mixture yields the related “structural pitstop” 2-D array {(tmeda)Ni(H2O)[Hg(CN)2]}{[Hg(CN)Cl]2Cl2}·H2O (2), in which the halide migration among Hg(II) centres is incomplete. The larger zero-field splitting D-values of 6.91(1) cm−1 for 1 vs. 2.85(4) cm−1 for 2 indicate that some weak antiferromagnetic interactions are likely present in 1. The reaction of tmeda/Cu(ClO4)2·6H2O with Hg(CN)2 yields [Cu(tmeda)(μ-OH)(ClO4)]2[Hg(CN)2(H2O)2][Hg(CN)2] (3) which is composed of [Cu(tmeda)(μ-OH)(ClO4)]2 dimers in which the \(\hbox{ClO}_4^{-}\) anions cis-bridge the copper(II) centres in the axial positions as well as bind to two adjacent Hg(CN)2 moieties; the perchlorate anion is acting as a rare η4–μ4–ClO4 ligand. N-cyano interactions also exist between the Hg(II) centres; overall, a 2-D corrugated sheet structure which stacks via Cl–O–Hg bridges to yield a 3-D array is formed. The χMT value for 3 decreases with decreasing temperature; a maximum in χM vs. T at 20 K is also observed. This is consistent with antiferromagnetic interactions within the copper(II) dimer, which were fit with the Bleaney-Bowers model to yield J=−23.1(1) cm−1, g=2.113(5) and a paramagnetic impurity P=0.017(1).

Keywords

Copper(II) and nickel(II) complexes mercury cyanide ligands coordination polymers magnetic properties 

References

  1. 1.
    K. R. Dunbar and R. A. Heintz, Prog. Inorg. Chem. 45, 283 (1997) and references therein; J. Lefebvre and D. B. Leznoff, in Macromolecules Containing Metal and Metal-like Elements, A. Abd-El-Aziz, C. E. Carraher, C. U. Pittman, J. E. Sheats, and M. Zeldin, eds. (John Wiley and Sons, New York, 2005) Vol. 5Google Scholar
  2. 2.
    M. Verdaguer, A. Bleuzen, V. Marvaud, J. Vaissermann, M. Seuleiman, C. Desplanches, A. Scuiller, C. Train, R. Garde, G. Gelly, C. Lomenech, I. Rosenman, P. Veillet, C. Cartier and F. Villain, Coord. Chem. Rev. 190–192, 1023 (1999)CrossRefGoogle Scholar
  3. 3.
    M. Ohba and H. Ôkawa, Coord. Chem. Rev. 198, 313 (2000)CrossRefGoogle Scholar
  4. 4.
    J. S. Miller Inorg. Chem. 39, 4392 (2000)CrossRefGoogle Scholar
  5. 5.
    T. Iwamoto, in Comprehensive Supramolecular Chemistry, J. M. Lehn, J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vögtle, G. Alberti, and T. Bein, eds. (Pergamon Press, Oxford, 1996)Google Scholar
  6. 6.
    D. B. Leznoff, B.-Y. Xue, B. O. Patrick, V. Sanchez, and R. C. Thompson, Chem. Commun. 259 (2001)Google Scholar
  7. 7.
    D. B. Leznoff, B.-Y. Xue, C. L. Stevens, A. Storr, R. C. Thompson, and B. O. Patrick, Polyhedron 20, 1247 (2001)CrossRefGoogle Scholar
  8. 8.
    D. B. Leznoff, B.-Y. Xue, R. J. Batchelor, F. W. B. Einstein, and B. O. Patrick, Inorg. Chem. 40, 6026 (2001)CrossRefPubMedGoogle Scholar
  9. 9.
    J. Lefebvre, R. J. Batchelor, and D. B. Leznoff, J. Am. Chem. Soc. 126, 16117 (2004)CrossRefPubMedGoogle Scholar
  10. 10.
    J. Lefebvre and D. B. Leznoff, Gold Bull. 38, 47 (2005)Google Scholar
  11. 11.
    C. J. Shorrock, B.-Y. Xue, P. B. Kim, R. J. Batchelor, B. O. Patrick, and D. B. Leznoff, Inorg. Chem. 41, 6743 (2002)CrossRefPubMedGoogle Scholar
  12. 12.
    N. D. Draper, R. J. Batchelor, B. C. Sih, Z.-G. Ye, and D. B. Leznoff, Chem. Mater. 15, 1612 (2003)CrossRefGoogle Scholar
  13. 13.
    N. D. Draper, R. J. Batchelor, and L. B. Leznoff, Cryst. Growth Des. 4, 621 (2004)CrossRefGoogle Scholar
  14. 14.
    N. D. Draper, R. J. Batchelor, P. M. Aguiar, S. Kroeker, and D. B. Leznoff, Inorg. Chem. 43, 6557 (2004)CrossRefPubMedGoogle Scholar
  15. 15.
    C. Janiak, Dalton Trans. 2781 (2003)Google Scholar
  16. 16.
    D. J. Chesnut, D. Hagrman, P. J. Zapf, R. P. Hammond, R. LaDuca, R. C. Haushalter, and J. Zubieta, Coord. Chem. Rev. 192, 737 (1999)CrossRefGoogle Scholar
  17. 17.
    I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements, World Scientific Publ., River Edge (1997); J. P. Lesso, A. J. Duncan, W. Sibbett, and M. J. Padgett, Appl. Opt. 39, 592 (2000)Google Scholar
  18. 18.
    V. H. Crawford, H. W. Richardson, J. R. Wasson, D. J. Hodgson, and W. E. Hatfield, Inorg. Chem. 15, 2107 (1976)CrossRefGoogle Scholar
  19. 19.
    O. Kahn, Molecular Magnetism (VCH, Weinheim, 1993)Google Scholar
  20. 20.
    E. J. Gabe, P. S. White, and G. D. Enright DIFRAC: A Fortran 77 Control Routine for 4-Circle Diffractometers (N. R. C., Ottawa, 1995)Google Scholar
  21. 21.
    E. J. Gabe, Y. LePage, J. -P. Charland, F. L. Lee, and P. S. White, J. Appl. Crystallogr. 22, 384 (1989)CrossRefGoogle Scholar
  22. 22.
    P. W. Betteridge, J. R. Carruthers, R. I. Cooper, C. K. Prout, and D. J. Watkins, J. Appl. Cryst. 36, 487 (2003)CrossRefGoogle Scholar
  23. 23.
    (a) International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham (present distributor Kluwer Academic Publishers: Boston, MA) (1974) p. 99Google Scholar
  24. 24.
    R. A. Penneman and L. H. Jones J. Inorg. Nucl. Chem. 20, 19 (1961)CrossRefGoogle Scholar
  25. 25.
    D. Grdenic, Quart. Rev. 19, 303 (1965)CrossRefGoogle Scholar
  26. 26.
    W. E. Hatfield, in Magneto-Structural Correlations in Exchange Coupled Systems W.R. Dillett, D. Gatteschi, and O. Kahn, eds. (Reidel, Dordrecht, 1984), pp. 555Google Scholar
  27. 27.
    F. Haftbaradaran, D. B. Leznoff, and V. E. Williams, Dalton Trans. 2105 (2003)Google Scholar
  28. 28.
    H. Oshio, T. Watanabe, A. Ohto, T. Ito, and U. Nagashima, Angew. Chem., Int. Ed. Engl. 33, 670 (1994)CrossRefGoogle Scholar
  29. 29.
    H. Oshio, T. Watanabe, A. Ohto, T. Ito, T. Ikoma, and S. Tero-Kubota, Inorg. Chem. 36, 3014 (1997)CrossRefPubMedGoogle Scholar
  30. 30.
    B. Bleaney and K. D. Bowers, Proc. R. Soc. London A 214, 451 (1952)CrossRefGoogle Scholar
  31. 31.
    E. Ruiz, P. Alemany, S. Alvarez, and J. Cano, J. Am. Chem. Soc. 119, 1297 (1997)CrossRefGoogle Scholar
  32. 32.
    E. Ruiz, P. Alemany, S. Alvarez, and J. Cano, Inorg. Chem. 36, 3683 (1997)CrossRefPubMedGoogle Scholar
  33. 33.
    H. Hu, Y. Liu, D. Zhang, and C. Liu, J. Mol. Struct. 546, 73 (2001)Google Scholar
  34. 34.
    K. T. McGregor, N. T. Watkins, D. L. Lewis, R. F. Drake, D. J. Hodgson, and W. E. Hatfield, Inorg. Nucl. Chem. Lett. 9, 423 (1973)CrossRefGoogle Scholar
  35. 35.
    G. A. van Albada, I. Mutikainen, U. Turpeinen, and J. Reedijk, Inorg. Chim. Acta 324, 273 (2001) and references thereinGoogle Scholar
  36. 36.
    I. Castro, J. Faus, M. Julve, C. Bois, J. A. Real, and F. Lloret, J. Chem. Soc., Dalton Trans. 47 (1992)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Neil D. Draper
    • 1
  • Michael J. Katz
    • 1
  • Raymond J. Batchelor
    • 1
  • Daniel B. Leznoff
    • 1
  1. 1.Department of ChemistrySimon Fraser UniversityBurnabyCanada

Personalised recommendations