The Beauty and Complexity of the Mixed-Ligand Pd(II)-containing Monomers, Oligomers and Polymers Built upon Diphosphines and 1,8-Diisocyano-p-menthane

  • Dalila Samar
  • Jean-François Fortin
  • Daniel Fortin
  • Andreas Decken
  • Pierre D. Harvey

The starting materials Pd(diphos)Cl2 where diphos = bis(diphenylphosphino)ethane (dppe), bis(diphenylphosphino)propane (dppp), bis(diphenylphosphino)butane (dppb), and Pd2(diphos′)2Cl4 where diphos′ = bis(diphenylphosphino)pentane (dpppen) and bis(diphenylphosphino)hexane (dpph) were reacted with the bridging ligand 1,8-diisocyano-p-menthane (dmb) to form species of the type {Pd2(diphos)2(dmb) 2 4+ } n and {Pd(diphos′)2(dmb) 2 4+ } n . Except for Pd2(dppe)2(dmb) 2 4+ , which was characterized by X-ray crystallography, the identity of the other weakly soluble dmb-containing materials were exhaustively characterized in solution and in the solid state by 31P NMR (Magic Angle Spinning), chemical analyses, MALDI-TOF, DSC, TGA, IR and T 1/NOE (31P NMR spin-lattice relaxation time and nuclear overhauser enhancement constant measurements). Model compounds such as Pd(diphos)(CN-tBu) 2 2+ (diphos = dppe, dppp, dppb) and Pd2(diphos′)2(CN-tBu) 4 4+ (diphos′ = dpppen, dpph; as BF 4 or PF 6 salts), were prepared and also characterized by X-ray crystallography. Evidence for mono- (model complexes only of the type dppe, dppp, and dppb) and dinuclear complexes, as well as oligomers and polymers, are obtained for most cases, as well as the presence of monomer–oligomer (or polymer) equilibrium. During the course of this study, the complexes [Pd(dppp)(CN-tBu)2](TCNQ)(Cl), [Pd2(dpppen)2(CN-tBu)2(Cl)2](PF6)2, and [Pd2(dpppen)2(CN-tBu)2(CN)2](TCNQ)2 (TCNQ = tetraquinodimethane anion) were isolated and characterized by X-ray crystallography.


palladium diphosphine isocyanide oligomer polymer X-ray structure spin-lattice relaxation time nuclear Overhauser enhancement MALDI-TOF 



The Natural Sciences and Engineering Research Council of Canada (NSERC) is acknowledged for funding.


  1. 1.
    Abd-El-Aziz A.S., Carraher C. E. Jr., Pittman C. U. Jr., Sheats J. E., Zeldin M., (eds) (2005). Macromolecule containing Metal and Metal-like Elements. Wiley–Interscience–John Wiley and Sons Inc., New York, Vol. 5Google Scholar
  2. 2.
    Sicard S., Bérubé J.-F., Samar D., Massaoudi A., Lebrun F., Fortin J.-F., Fortin D., Harvey P.D., (2004). Inorg. Chem. 43:5321CrossRefPubMedGoogle Scholar
  3. 3.
    Fournier É., Sicard S., Decken A., Harvey P.D., (2004). Inorg. Chem. 43: 1491CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang T., Drouin M., Harvey P. D., (1999). Inorg. Chem. 38:1305CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang T., Drouin M., Harvey P. D., (1999). Inorg. Chem. 38: 957CrossRefPubMedGoogle Scholar
  6. 6.
    P. D. Harvey, in Macromolecule Containing Metal and Metal-like Elements, Vol. 5, A. S. Abd-El-Aziz, C. E. Carraher Jr., C. U. Pittman Jr., J. E. Sheats, M. Zeldin, eds. (Wiley–Interscience–John Wiley and Sons Inc., New York, 2005), Chap. 4, p. 83Google Scholar
  7. 7.
    Miller J.S., (eds) (1983). Extended Linear Chain Compounds Vol. 1. Plenum, New YorkGoogle Scholar
  8. 8.
    Drouin M., Perreault D., Harvey P.D., Michel A., (1991). Acta Crystallogr. C 47:752CrossRefGoogle Scholar
  9. 9.
    Mixa M. M., Matsch P. A., Boyd D. C., Mann K. R., (1986). Inorg. Chem. 25:3331CrossRefGoogle Scholar
  10. 10.
    Harvey P. D., (2001). Coord. Chem. Rev. 219–221:17CrossRefGoogle Scholar
  11. 11.
    Dekker G. P. C., Elsevier C. J., Vrieze K., (1992). Organometallics 11:1598CrossRefGoogle Scholar
  12. 12.
    J. M. J. Paulusse and R. P. Sijbesma, Chem. Comm. 1494 (2003)Google Scholar
  13. 13.
    Weber W. D., Gokel G. W., Ugi I. K., (1972). Angew. Chem. Int. Ed. Engl. 11:530CrossRefGoogle Scholar
  14. 14.
    Drew D., Doyle J. R., (1972). Inorg. Synth. 13:47CrossRefGoogle Scholar
  15. 15.
    M. J. Hudson, R. S. Nyholm, and M. H. B. Stiddard, J. Chem. Soc. A 40 (1968)Google Scholar
  16. 16.
    Steffen W. L., Palenik G. J., (1976). Inorg. Chem. 15:243CrossRefGoogle Scholar
  17. 17.
    Y. Sugi, K. Bando, and S. Shin, Chem. Ind. 397 (1975)Google Scholar
  18. 18.
    N. A. Al-Salem, H. Empsall, R. Markham, B. L. Shaw, B. Weeks, J. Chem. Soc. Dalton Trans. 1972 (1979)Google Scholar
  19. 19.
    Housecroft C. E., Shaykh B. A. M., Rheingold A. L., Haggerty B. S. (1991). Inorg. Chem. 30:125CrossRefGoogle Scholar
  20. 20.
    Perrin D. D., Armarego W. L. F., Perrin D. R., (1966). Purifications of Laboratory Chemicals. Pergamon, Oxford, UKGoogle Scholar
  21. 21.
    Gordon A. J., Ford R. A., (1972). The Chemist’s companion, a handbook of practical data, techniques, and references. Wiley, New York, p 436Google Scholar
  22. 22.
    SAINT, Release 6.06; Integration Software for Single Crystal Data, Bruker AXS Inc., Madison, WI 53719-1173 (1999)Google Scholar
  23. 23.
    SADABS George Sheldrick, Bruker AXS, Inc., Madison, Wisconsin, USA (1999)Google Scholar
  24. 24.
    SHELXTL 5.1, George Sheldrick, Bruker AXS, Inc., Madison, Wisconsin, USA (1997)Google Scholar
  25. 25.
    Y. Le Page, P. S. White, and E. J. Gabe, Proc. Am. Crystallogr. Hamilton Meet. Abstract PA23 (1986)Google Scholar
  26. 26.
    Gabe E.J., Le Page Y., Charland J.-P., Lee F.L., White P.S., (1989). J. Appl. Crystallogr. 22: 384CrossRefGoogle Scholar
  27. 27.
    G. M. Sheldrick, SHELXL-97 (University of Gottingen, Gottingen, Germany, 1997)Google Scholar
  28. 28.
    Larson A. C., (1970). Crystallographic Computing. Munksgaard, Copenhagen, Denmark, p. 291Google Scholar
  29. 29.
    Sheldrick G. M., (1997). SHELXS-97, Program for the Solution of Crystal Structures. Univ. of Gottingen, GermanyGoogle Scholar
  30. 30.
    Flack H. D., (1983). Acta Cryst. A39: 876Google Scholar
  31. 31.
    Flack H. D., Blanc E., Schwarzenbach D., (1992). J. Appl. Cryst. 25: 455CrossRefGoogle Scholar
  32. 32.
    GEMINI 1.0, Bruker AXS, Inc., Madison, Wisconsin, USA (1999)Google Scholar
  33. 33.
    RLATT 2.72, Bruker AXS, Inc., Madison, Wisconsin, USA (1999)Google Scholar
  34. 34.
    C. Smith Jr. and G. M. Gray, J. Chem. Soc., Dalton Trans. 677 (2000)Google Scholar
  35. 35.
    Turcotte M., Harvey P. D., (2002). Inorg. Chem. 41:1739CrossRefPubMedGoogle Scholar
  36. 36.
    Plourde F., Gilbert K., Gagnon J., Harvey P. D., (2003). Organometallics 22:2862CrossRefGoogle Scholar
  37. 37.
    Drago R. S., (1992). Physical Methods for Chemists 2Ed. Saunders College Pu., New YorkGoogle Scholar
  38. 38.
    Wehrli F. W., Wirthlin T., (1980). Interpretation of Carbon-13 NMR Spectra. Heyden, LondonGoogle Scholar
  39. 39.
    Sykes A. G., Mann K. R., (1998). J. Am. Chem. Soc. 110: 8252CrossRefGoogle Scholar
  40. 40.
    Sykes A. G., Mann K. R., (1990). Inorg. Chem. 29:4449CrossRefGoogle Scholar
  41. 41.
    Fortin D., Drouin M., Harvey P. D., (2000). Inorg. Chem. 39:2758CrossRefPubMedGoogle Scholar
  42. 42.
    Harvey P. D., Truong K. D., Aye K. T., Bandrauk A. D., (1994). Inorg. Chem. 333: 2347CrossRefGoogle Scholar
  43. 43.
    C.-M. Che, W.-T. Wong, T.-F. Lai, and H. L. Kwong, J. Chem. Soc., Chem. Commun. 243 (1989)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Dalila Samar
    • 1
  • Jean-François Fortin
    • 1
  • Daniel Fortin
    • 1
  • Andreas Decken
    • 2
  • Pierre D. Harvey
    • 1
  1. 1.Département de ChimieUniversité de SherbrookeSherbrookeCanada
  2. 2.Department of ChemistryUniversity of New BrunswickFrederictonCanada

Personalised recommendations