Skip to main content

The physical face of slums: a structural comparison of slums in Mumbai, India, based on remotely sensed data


The term “slum” is difficult to define, but if we see one, we know it. Definitions for slums are qualitative such as “areas of people lacking, for example, durable housing or easy access to safe water”. This study aims at identifying characteristic physical features of the built environment that allows defining slum areas based on quantitative and measurable parameters. In general, spatial data on slums are generalized, outdated, or even nonexistent. The bird’s eye view of remotely sensed data is capable to provide an independent, area-wide spatial overview, to capture the complex morphological pattern and at the same time capture the large-scale individual objects typical for slums. Using high-resolution optical satellite data, parameters such as building density, building heights, and sizes are used to differentiate between slums and formal settlements. From it, the physical features are used to analyze structural homogeneity and heterogeneities within and across slums and to suggest characteristic physical features for spatial slum delineation at three study sites in Mumbai, India.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  • Angeles, G., Lance, P., Barden-O’Fallon, J., Islam, N., Mahbub, A. Q. M., & Nazem, N. I. (2009). The 2005 census and mapping of slums in Bangladesh: Design, selected results and application. International Journal of Health Geographics, 8, 32. doi:10.1186/1476-072x-8-32.

  • Arimah, B. C. (2010). The face of urban poverty. United Nations University, UNU-WIDER. Working paper no. 2010/30.

  • Asha, K. (2006). Urban slums in India—The myths and the reality. Asha-Seattle’s Quarterly Newsletter, 12(2), 1–3.

  • Bähr, J., & Mertins, G. (2000). Marginalviertel in Großstädten der Dritten Welt. Geographische Rundschau, 52(7–8), 19–26.

    Google Scholar 

  • Barros, F. M., & Sobreira, F. (2002). City of slums: Self-organisation across scales. CASA working papers series 2002, 55. Available online at

  • Barros, F. M., & Sobreira, F. (2005). Assessing texture pattern in slum across scales: an unsupervised approach. (CASA working papers 87). London: Centre for Advanced Spatial Analysis (UCL).

  • Baud, I., Kuffer, M., Pfeffer, K., Sliuzas, R., & Karuppannan, S. (2010). Understanding heterogeneity in metropolitan India: The added value of remote sensing data for analyzing sub-standard residential areas. International Journal of Applied Earth Observation and Geoinformation, 12(5), 359–374.

    Article  Google Scholar 

  • Ebert, A., Kerle, N., & Stein, A. (2009). Urban social vulnerability assessment with physical proxies and spatial metrics derived from air- and spaceborne imagery and GIS data. Natural Hazards, 48(2), 275–294.

    Article  Google Scholar 

  • Esch, T., Taubenböck, H., Roth, A., Heldens, W., Felbier, A., Thiel, M., et al. (2012). TanDEM-X mission: New perspectives for the inventory and monitoring of global settlement patterns. Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 6, 22.

    Google Scholar 

  • Fuchs, M. (2006). Slum als Projekt: Dharavi und die Falle der Marginalisierung. In R. Ahuja & C. Brosius (Eds.), Mumbai–Delhi–Kolkata. Annäherungen an die Megastädte Indiens (pp. 47–63). Heidelberg: Draupadi.

    Google Scholar 

  • Gunter, A. W. (2009). Getting it for free: Using Google earth™ and IL WIS to map squatter settlements in Johannesburg. In Geoscience and Remote Sensing Symposium, 2009 IEEE International, IGARSS 2009 (Vol. 3, pp. III-388–III-391). 12–17 July 2009.

  • Hofmann, P. (2001). Detecting informal settlements from IKONOS image data using methods of object oriented image analysis—An example from Cape Town (South Africa). In Proceedings of the 2nd international symposium remote sensing of urban areas (pp. 107–118). Regensburg, Germany, June 22–23, 2001.

  • Hofmann, P., Strobl, J., Blaschke, T., & Kux, H. (2008). Detecting informal settlements from Quickbird data in Rio De Janeiro using an object based approach. Object-based Image Analysis, 23, 531–553.

    Google Scholar 

  • Hurskainen, P., & Pellikka, P. (2004). Change detection of informal settlements using multi-temporal aerial photographs? The case of Voi, SE-Kenya. In Proceedings of the 5th AARSE conference. Nairobi, Kenya.

  • Indiastat. (2011). Revealing India statistically.

  • Jain, S. (2007). Use of IKONOS satellite data to identify informal settlements in Dehradun, India. International Journal of Remote Sensing, 28(15), 3227–3233.

    Google Scholar 

  • Joshi, P., Sen, S., & Hobson, J. (2002). Experiences with surveying and mapping Pune and Sangli slums on a geographical information system (GIS). Environment and Urbanization, 14, 225–240.

    Google Scholar 

  • Kamini, J., Satish, J., & Raghavswamy, V. (2006). Spatio-temporal analysis of land use in urban Mumbai using multi-sensor satellite data and Gis techniques. Journal of the Indian Society of Remote Sensing, 34(4), 385–396.

    Article  Google Scholar 

  • Kit, O., Lüdeke, M., & Rechien, D. (2012). Texture-based identification of urban slums in Hyderabad, India using remote sensing data. Applied Geography, 32(2), 660–667.

    Article  Google Scholar 

  • Kohli, D., Sliuzas, R., Kerle, N., & Stein, A. (2012). An ontology of slums for image-based classification. Computers, Environment and Urban Systems, 36, 154–163.

    Google Scholar 

  • Kuffer, M., & Barros, J. (2011). Urban morphology of unplanned settlements: The use of spatial metrics in VHR remotely sensed images. Procedia Environmental Sciences, 7(011), 152–157.

    Article  Google Scholar 

  • Lewis, C. (2011). Dharavi in Mumbai is no longer Asia’s largest slum. The Times of India.

  • Mayunga, S. D., Coleman, D. J., & Zhang, Y. (2007). A semi-automated approach for extracting buildings from QuickBird imagery applied to informal settlement mapping. International Journal of Remote Sensing, 28(10), 2343–2357.

    Article  Google Scholar 

  • Netzband, M., Banzhaf, E., Höfer, R., & Hannemann K (2009) Identifying the poor in cities—How can remote sensing help to profile slums in fast growing cities and megacities? IHDP Update, (1), 22–28 (ISSN 1727-155X).

  • Netzband, M., & Rahman, A. (2009). Physical characterisation of deprivation in cities: How can remote sensing help to profile poverty (slum dwellers) in the megacity of Delhi/India. IEEE Urban Remote Sensing Event. doi:10.1109/URS.2009.5137652 (ISBN no. 978-1-4244-3460-2).

  • Niebergall, S., Loew, A., & Mauser, W. (2008). Integrative assessment of informal settlements using VHR remote sensing data—The Delhi case study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1(3), 193–205.

    Google Scholar 

  • Nissel, H. (1977). Bombay. Untersuchungen zur Struktur und Dynamik einer indischen Metropole. In B. Hofmeister, & H. Valentin (Eds.), Berliner Geographische Studien. Berlin: Institut für Geographie der Technischen Universität Berlin.

  • Nissel, H. (2006). Bombay/Mumbai: Stadterweiterung und Stadtumbau einer “Globalized City”. In R. Ahuja & C. Brosius (Eds.), Mumbai–Delhi–Kolkata. Annäherung an die Megastädte Indiens (pp. 19–34). Heidelberg: Draupadi.

    Google Scholar 

  • O’Hare, G., Abbott, D., & Barke, M. (1998). A review of slum housing policies in Mumbai. Cities, 15(4), 269–283.

    Article  Google Scholar 

  • OpenStreetMap Project. (2012). OpenStreetMap Community. Project support by OpenStreetMap Foundation, Created by Steve Coast.

  • Pacific Disaster Center (Eds.). (2005). Mumbai, India. (Disaster Risk Management City Profiles). Kihei.

  • Richards, J. A., & Jia, X. (1999). Remote sensing digital analysis—An introduction (3rd ed.). Berlin: Springer. 464.

    Book  Google Scholar 

  • Risbud, N. (2003). The case of Mumbai, India. In UN-Habitat (Ed.), Mumbai, India. (Understanding Slums: Case Studies for the Global Report on Human Settlements 2003). London.

  • Rüther, H., Martine, H. M., & Mtalo, E. G. (2002). Application of snakes and dynamic programming optimisation technique in modeling of buildings in informal settlement areas. ISPRS Journal of Photogrammetry & Remote Sensing, 56(2002), 269–282.

    Article  Google Scholar 

  • Schneider-Sliwa, R., & Bhatt, M. (Eds.), (2008). Recovering of Slums. Determinants of poverty and upward social mobility in urban slums. Case studies from India. Basel: Schwabe/Basel Development Studies.

  • Schneider-Sliwa, R., & Meusburger, P. (2002). Slum. Lexikon der Geographie, Band 3 (p. 231). Heidelberg: Berlin Spektrum Akademischer Verlag.

    Google Scholar 

  • Schubert, D. (2009). Der größte Slum Asiens: Dharavi (Mumbai)—Von Fehlschlägen der „Sanierung“zum Modellprojekt? In Arbeitskreis Stadterneuerung und Institut für Stadt-und Regionalplanung (Eds.), Megacities und Stadterneuerung. Jahrbuch Stadterneuerung 2009 (pp. 99–114). Berlin: Universitätsverlag der TU Berlin.

  • Singh, S. (2011). Redeveloping Dharavi, but which way?

  • Singh, H. H., & Kumra, V. K. (1986). Slums: Threat to urban environment. In H. H. Singh et al. (Eds.), Geography and environment: Issues and challenges (pp. 113–138). New Delhi: Concept.

  • Sirmacek, B., Taubenböck, H., Reinartz, P., & Ehlers, M. (2012). Evaluation of automatically generated three-dimensional city models derived from remotely sensed data. Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 5(1), 59–70.

    Article  Google Scholar 

  • Sliuzas, R., & Kuffer, M. (2008). Analysing the spatial heterogeneity of poverty using remote sensing: Typology of poverty areas using selected RS based indicators. In C. Jürgens (Ed.), Remote sensingNew challenges of high resolution. Bochum: The university of Bochum.

  • Sliuzas, R., Mboup, G., & de Sherbinin, A. (2008) Report of the expert group meeting on slum identification and mapping. Report by CIESIN, UN-Habitat, ITC, p. 36.

  • Stang, F. (2002). Indien. Darmstadt: Wissenschaftliche Buchgesellschaft, p. 42.

  • Stasolla, M., & Gamba, P. (2008). Spatial Indexes for the extraction of formal and informal human settlements from high-resolution SAR Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1(2), 98–106.

    Google Scholar 

  • Stow, D., Lopez, A., Lippitt, C., Hinton, S., & Weeks, J. (2007). Object-based classification of residential land use within Accra, Ghana based on QuickBird satellite data. International Journal of Remote Sensing, 28(22), 5167–5173.

    Article  Google Scholar 

  • Taubenböck, H., Esch, T., Felbier, A., Wiesner, M., Roth, A., & Dech, S. (2012). Monitoring of mega cities from space. Remote Sensing of Environment, 117, 162–176.

    Article  Google Scholar 

  • Taubenböck, H., Wegmann, M., Roth, A., Mehl, H., & Dech, S. (2009). Urbanization in India—Spatiotemporal analysis using remote sensing data. Computers, Environment and Urban Systems, 33, 179–188.

    Google Scholar 

  • Taubenböck, H., Wurm, M., Setiadi, N., Gebert, N., Roth, A., Strunz, G., et al. (2009). Integrating remote sensing and social science—The correlation of urban morphology with socioeconomic parameters. Shanghai: JURSE. pp. 7.

    Google Scholar 

  • The Slum Areas Improvement and Clearance Act. (1956).

  • UN-Habitat. (2003a). Challenge of slums-global report on human settlements (Vol. 310). Nairobi: UN-Habitat.

    Google Scholar 

  • UN-Habitat. (2003b). Slums of the World: The face of urban poverty in the new millennium?. Nairobi: UN-Habitat.

    Google Scholar 

  • UN-Habitat. (2006). Slum upgrading facility. Volume 1 SUF Action Planning Methodology and Development Guidelines.

  • UN-Habitat (United Nations Centre for Human Settlements). (2002). Cities without slums. Nairobi.

  • United Nations Department of Economic and Social Affairs. (2009). Population division. United Nations publications.

  • United Nations. (2011). MDG-Report.

  • Vaz, L. F., & Berenstein, J. P. (2004). Morphological diversity in the squatter settlements of Rio de Janeiro. In K. Stanilov & B. C. Scheer (Eds.), Suburban form: An international perspective (pp. 61–72). New York: Routledge.

    Google Scholar 

  • Weeks, J., Hill, A., Stow, D., Getis, A., & Fugate, D. (2007). Can we spot a neighborhood from the air? Defining neighborhood structure in Accra, Ghana. GeoJournal, 69(1), 9–22.

  • Wurm, M., Taubenböck, H., & Dech, S. (2010). Quantification of urban structures on building block level utilizing multisensoral remote sensing data. Toulouse: SPIE Europe. pp 13.

    Google Scholar 

  • Wurm, M., Taubenböck, H., Schardt, M., Esch, T., & Dech, S. (2011). Object-based image information fusion using multisensor earth observation data over urban areas. International Journal of Image and Data Fusion, 2(2), 121–147.

    Google Scholar 

Download references


The authors would like to thank the Slum Rehabilitation Society in Mumbai, Raajesh Senha for additional information about the study sites, and Michael Wurm from the German Aerospace Center (DLR) for his support. Furthermore we would like to thank Digital Globe (European Space Imaging) for providing the high resolution optical data.

Author information

Authors and Affiliations


Corresponding author

Correspondence to H. Taubenböck.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taubenböck, H., Kraff, N.J. The physical face of slums: a structural comparison of slums in Mumbai, India, based on remotely sensed data. J Hous and the Built Environ 29, 15–38 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Slum
  • (In)formal settlement
  • Remote sensing
  • Structural urban analysis
  • Mumbai