Skip to main content

Proximal and Distal Risk Factors for Gambling Problems Specifically Associated with Electronic Gaming Machines

Abstract

Electronic gaming machines (EGMs) are widely used and the gambling product most commonly associated with harmful gambling. Understanding factors that increase the risk of problematic EGM play is therefore important. Previous studies into risk factors for EGM gambling have used measures of problem gambling based on an individual’s total gambling activity, which therefore do not distinguish harmful gambling specifically associated with EGMs. This study used an EGM-specific measure (PGSI-EGM) to achieve its aim of identifying risk factors specifically associated with problematic EGM play. By removing nuisance effects from other gambling forms that higher-risk gamblers typically engage in, this approach provides a more accurate assessment of the determinants of EGM-related problems. An online survey was completed by 1932 at-least monthly EGM players in Australia. It measured demographics, EGM gambling behaviour, motivations, gambling urges, gambling fallacies, trait self-control, alcohol misuse, and the PGSI-EGM. A penalised regression model identified the most important proximal predictors of higher-risk EGM gambling as: higher gambling urges, higher levels of erroneous cognitions, playing EGMs more frequently, higher session expenditure, longer sessions, usually playing EGMs alone, and playing EGMs in more venues. Lower trait self control was the strongest distal determinant. Higher-risk EGM players tended to be younger, male, more educated, never married, to have higher (although still modest) incomes, and be more likely to have alcohol problems. These findings can inform interventions such as treatment, consumer education and venue interventions.

This is a preview of subscription content, access via your institution.

References

  1. Abbott, M., Binde, P., Clark, L., Hodgins, D., Korn, D., Pereira, A., et al. (2015). Conceptual framework of harmful gambling: An international collaboration revised September 2015. Guelph: Gambling Research Exchange Ontario (GREO).

    Google Scholar 

  2. ACIL Allen Consulting, Deakin University, Central Queensland University and the Social Research Centre. (2018). Fourth social and economic impact study of gambling in Tasmania: Report 2. Hobart: Tasmanian Department of Treasury and Finance.

    Google Scholar 

  3. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). Washington: American Psychiatric Association.

    Google Scholar 

  4. Armstrong, A., & Carroll, M. (2017). Gambling activity in Australia: Findings from wave 15 of the household, income and labour dynamics in Australia (HILDA) survey. Melbourne: Australian Gambling Research Centre.

    Google Scholar 

  5. Australian Bureau of Statistics. (2019). Average salary Australia. Retrieved March 22, 2019 from https://www.livingin-australia.com/salaries-australia/.

  6. Baron, E., & Dickerson, M. (1999). Alcohol consumption and self-control of gambling behaviour. Journal of Gambling Studies,15(1), 3–15.

    PubMed  PubMed Central  Google Scholar 

  7. Bergen, A. E., Newby-Clark, I. R., & Brown, A. (2012). Low trait self-control in problem gamblers: Evidence from self-report and behavioral measures. Journal of Gambling Studies,28(4), 637–648.

    PubMed  Google Scholar 

  8. Billieux, J., Van der Linden, M., Khazaal, Y., Zullino, D., & Clark, L. (2012). Trait gambling cognitions predict near-miss experiences and persistence in laboratory slot machine gambling. British Journal of Psychology,103(3), 412–427.

    PubMed  Google Scholar 

  9. Blaszczynski, A., & Nower, L. (2002). A pathways model of problem and pathological gambling. Addiction,97(5), 487–499.

    PubMed  PubMed Central  Google Scholar 

  10. Bondolfi, G., Osiek, C., & Ferrero, F. (2000). Prevalence estimates of pathological gambling in Switzerland. Acta Psychiatrica Scandinavica,101(6), 473–475.

    CAS  PubMed  Google Scholar 

  11. Calado, F., & Griffiths, M. D. (2016). Problem gambling worldwide: An update and systematic review of empirical research (2000–2015). Journal of Behavioral Addictions,5(4), 592–613.

    PubMed  PubMed Central  Google Scholar 

  12. Chou, K. L., & Afifi, T. O. (2011). Disordered (pathologic or problem) gambling and axis I psychiatric disorders: results from the national epidemiologic survey on alcohol and related conditions. American Journal of Epidemiology,173(11), 1289–1297.

    PubMed  PubMed Central  Google Scholar 

  13. Clark, L., Crooks, B., Clarke, R., Aitken, M. R., & Dunn, B. D. (2012). Physiological responses to near-miss outcomes and personal control during simulated gambling. Journal of Gambling Studies,28(1), 123–137.

    PubMed  Google Scholar 

  14. Clark, L., Lawrence, A. J., Astley-Jones, F., & Gray, N. (2009). Gambling near-misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron,61(3), 481–490.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Clarke, D. (2004). Impulsivity, locus of control, motivation, and problem gambling. Journal of Gambling Studies,4, 319–345.

    Google Scholar 

  16. Consulting, Schottler. (2014). Study of gambling and health in Victoria: Findings from the Victorian Prevalence Study 2014. Melbourne: Victorian Responsible Gambling Foundation.

    Google Scholar 

  17. Corless, T., & Dickerson, M. (1989). Gamblers’ self-perceptions of the determinants of impaired control. British Journal of Addiction,84, 1527–1537.

    CAS  PubMed  Google Scholar 

  18. Cronce, J. M., & Corbin, W. R. (2010). Effects of alcohol and initial gambling outcomes on within-session gambling behavior. Experimental and Clinical Psychopharmacology,18(2), 145.

    PubMed  PubMed Central  Google Scholar 

  19. Currie, S. R., Hodgins, D. C., Casey, D. M., el-Guebaly, N., Smith, G. J., Williams, R. J., et al. (2012). Examining the predictive validity of low-risk gambling limits with longitudinal data. Addiction,107(2), 400–406.

    PubMed  Google Scholar 

  20. Currie, S. R., Hodgins, D. C., Wang, J., El-Guebaly, N., & Wynne, H. (2008). In pursuit of empirically based responsible gambling limits. International Gambling Studies,8(2), 207–227.

    Google Scholar 

  21. Delfabbro, P. H. (2012). Australasian gambling review (5th ed.). Adelaide: Independent Gambling Authority.

    Google Scholar 

  22. Delfabbro, P. H., & Winefeld, A. H. (2000). Predictors of irrational thinking in regular slot machine gamblers. The Journal of Psychology,134(2), 117–128.

    CAS  Google Scholar 

  23. Dowling, N., Smith, D., & Thomas, T. (2005). Electronic gaming machines: Are they the ‘crack-cocaine’of gambling? Addiction,100(1), 33–45.

    Google Scholar 

  24. Dowling, N., Youssef, G., Greenwood, C., Merkouris, S., Suomi, A., & Room, R. (2018). The development of empirically derived Australian responsible gambling limits. Melbourne: Victorian Responsible Gambling Foundation.

    Google Scholar 

  25. el-Guebaly, N., Casey, D. M., Hodgins, D. C., Smith, G. J., Williams, R. J., Schopflocher, D. P., et al. (2008). Designing a longitudinal cohort study of gambling in Alberta: Rationale, methods and challenges. Journal of Gambling Studies,24(4), 479–504.

    PubMed  Google Scholar 

  26. Ellery, M., Stewart, S. H., & Loba, P. (2005). Alcohol’s effects on video lottery terminal (VLT) play among probable pathological and non-pathological gamblers. Journal of Gambling Studies,21(3), 299–324.

    PubMed  Google Scholar 

  27. Emond, M. S., & Marmurek, H. H. (2010). Gambling related cognitions mediate the association between thinking style and problem gambling severity. Journal of Gambling Studies,26(2), 257–267.

    PubMed  PubMed Central  Google Scholar 

  28. Ewing, J. A. (1984). Detecting alcoholism: The CAGE questionnaire. JAMA,252(14), 1905–1907.

    CAS  PubMed  Google Scholar 

  29. Fang, X., & Mowen, J. C. (2009). Examining the trait and functional motive antecedents of four gambling activities: Slot machines, skilled card games, sports betting, and promotional games. Journal of Consumer Marketing,26(2), 121–131.

    Google Scholar 

  30. Ferris, J., & Wynne, H. (2001). The Canadian Problem Gambling Index: Final report. Ottawa: Canadian Centre on Substance Abuse.

    Google Scholar 

  31. Flack, M., & Morris, M. (2016). The temporal stability and predictive ability of the Gambling Outcome Expectancies Scale (GOES): A prospective study. Journal of Gambling Studies,32(3), 923–933.

    PubMed  Google Scholar 

  32. French, M. T., Maclean, J. C., & Ettner, S. L. (2008). Drinkers and bettors: Investigating the complementarity of alcohol consumption and problem gambling. Drug and Alcohol Dependence,96(1–2), 155–164.

    PubMed  PubMed Central  Google Scholar 

  33. Giroux, I., Faucher-Gravel, A., St-Hilaire, A., Boudreault, C., Jacques, C., & Bouchard, S. (2013). Gambling exposure in virtual reality and modification of urge to gamble. Cyberpsychology, Behavior, and Social Networking,16(3), 224–231.

    Google Scholar 

  34. Goodie, A. S., & Fortune, E. E. (2013). Measuring cognitive distortions in pathological gambling: Review and meta-analyses. Psychology of Addictive Behaviors,27(3), 730.

    Google Scholar 

  35. Griffiths, M. D. (1993). Fruit machine gambling: The importance of structural characteristics. Journal of Gambling Studies,9(2), 101–120. https://doi.org/10.1007/BF01014863.

    Article  Google Scholar 

  36. Griffiths, M. D. (1994). The role of cognitive bias and skill in fruit machine gambling. British Journal of Psychology,85(3), 351–369.

    Google Scholar 

  37. Griffiths, M. D. (1995). Towards a risk factor model of fruit machine addiction: A brief note. Journal of Gambling Studies,11(3), 343–346.

    CAS  PubMed  Google Scholar 

  38. Griffiths, M. D. (1999). Gambling technologies: Prospects for problem gambling. Journal of Gambling Studies,15(3), 265–283.

    PubMed  PubMed Central  Google Scholar 

  39. Griffiths, M. D., Wardle, H., Orford, J., Sproston, K., & Erens, B. (2010). Gambling, alcohol, consumption, cigarette smoking and health: Findings from the 2007 British Gambling Prevalence Survey. Addiction Research & Theory,18(2), 208–223.

    Google Scholar 

  40. Hahmann, T. E. (2017). Moderate-risk and problem slot machine gamblers: A typology of gambling-related cognitions. Journal of Gambling Issues,34, 140–155.

    Google Scholar 

  41. Hing, N., & Breen, H. (2002). A profile of gaming machine players in clubs in Sydney, Australia. Journal of Gambling Studies,18(2), 185–205.

    PubMed  Google Scholar 

  42. Hing, N., Gainsbury, S., Blaszczynski, A., Wood, R., Lubman, D., & Russell, A. (2014). Interactive gambling. Melbourne: Gambling Research Australia.

    Google Scholar 

  43. Hing, N., & Haw, J. (2009). The development of a multi-dimensional gambling accessibility scale. Journal of Gambling Studies,25(4), 569–581.

    PubMed  Google Scholar 

  44. Hing, N., Nuske, E., & Breen, H. (2017a). A review of research into problem gambling amongst Australian women (Ch 18). In H. Bowden-Jones & F. Prever (Eds.), Gambling disorder in women: An international female perspective on treatment and research (pp. 235–246). London: Routledge.

    Google Scholar 

  45. Hing, N., Russell, A. M., & Browne, M. (2017b). Risk factors for gambling problems on online electronic gaming machines, race betting and sports betting. Frontiers in Psychology,8, 779.

    PubMed  PubMed Central  Google Scholar 

  46. Hing, N., Russell, A., Tolchard, B., & Nower, L. (2016). Risk factors for gambling problems: An analysis by gender. Journal of Gambling Studies,32(2), 511–534.

    PubMed  PubMed Central  Google Scholar 

  47. Hodgins, D. C., Stea, J. N., & Grant, J. E. (2011). Gambling disorders. The Lancet,378(9806), 1874–1884.

    Google Scholar 

  48. Hounslow, V., Smith, D., Battersby, M., & Morefield, K. (2011). Predictors of problem gambling severity in treatment seeking gamblers. International Journal of Mental Health and Addiction,9(6), 682–695.

    Google Scholar 

  49. Jacobs, D. F. (1986). A general theory of addictions: A new theoretical model. Journal of Gambling Behavior,2, 15–31.

    Google Scholar 

  50. Joukhador, J., Blaszczynski, A., & Maccallum, F. (2004). Superstitious beliefs in gambling among problem and non-problem gamblers: Preliminary data. Journal of Gambling Studies,20(2), 171–180.

    PubMed  Google Scholar 

  51. Kweitel, R., & Allen, F. (2003). Gaming machine gambling: Different payoffs for men and women? International Gambling Studies,3(2), 149–161.

    Google Scholar 

  52. Ladouceur, R., Blaszczynski, A., & Lalande, D. R. (2012). Pre-commitment in gambling: a review of the empirical evidence. International Gambling Studies,12(2), 215–230.

    Google Scholar 

  53. Lambos, C., & Delfabbro, P. (2007). Numerical reasoning ability and irrational beliefs in problem gambling. International Gambling Studies,7(2), 157–171.

    Google Scholar 

  54. Lesieur, H. R., & Blume, S. B. (1987). The South Oaks gambling screen (SOGS): A new instrument for the identification of pathological gamblers. American Journal of Psychiatry,144(9), 1184–1188.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lister, J. J., Nower, L., & Wohl, M. J. (2016). Gambling goals predict chasing behavior during slot machine play. Addictive Behaviors,62, 129–134.

    PubMed  Google Scholar 

  56. Livingstone, C. (2005). Desire and the consumption of danger: Electronic gaming machines and the commodification of interiority. Addiction Research & Theory,13(6), 523–534. https://doi.org/10.1080/16066350500338161.

    Article  Google Scholar 

  57. Livingstone, C. (2017). How electronic gambling machines work: EGM structural characteristics. AGRC Discussion paper 8. Retrieved from: https://aifs.gov.au/agrc/sites/default/files/publication-documents/1706_argc_dp8_how_electronic_gambling_machines_work.pdf.

  58. Lorains, F. K., Stout, J. C., Bradshaw, J. L., Dowling, N. A., & Enticott, P. G. (2014). Self-reported impulsivity and inhibitory control in problem gamblers. Journal of Clinical and Experimental Neuropsychology,36(2), 144–157.

    PubMed  Google Scholar 

  59. MacLaren, V., Ellery, M., & Knoll, T. (2015). Personality, gambling motives and cognitive distortions in electronic gambling machine players. Personality and Individual Differences,73, 24–28.

    Google Scholar 

  60. MacLaren, V. V., Fugelsang, J. A., Harrigan, K. A., & Dixon, M. J. (2012a). Effects of impulsivity, reinforcement sensitivity, and cognitive style on pathological gambling symptoms among frequent slot machine players. Personality and Individual Differences,52(3), 390–394.

    Google Scholar 

  61. MacLaren, V. V., Harrigan, K. A., & Dixon, M. (2012b). Gambling motives and symptoms of problem gambling in frequent slots players. Journal of Gambling Issues,27, 1–13.

    Google Scholar 

  62. McBain, N., & Ohtsuka, K. (2001). Predicting problem gambling among poker machine players from coping styles and motivational factors. In A. Blaszczynski (Ed.), Culture and gambling phenomenon: The proceedings of the 11th national conference of the national association for gambling studies, Sydney (pp. 225—240). Alphington, Australia: The National Association for Gambling Studies.

  63. McKeith, C. F., Rock, A. J., & Clark, G. I. (2017). Trait mindfulness, problem-gambling severity, altered state of awareness and urge to gamble in poker-machine gamblers. Journal of Gambling Studies,33(2), 617–632.

    PubMed  Google Scholar 

  64. Mishra, S., Lalumière, M. L., & Williams, R. J. (2010). Gambling as a form of risk-taking: Individual differences in personality, risk-accepting attitudes, and behavioral preferences for risk. Personality and Individual Differences,49(6), 616–621.

    Google Scholar 

  65. Moodie, C. (2007). An exploratory investigation into the erroneous cognitions of pathological and social fruit machine gamblers. Journal of Gambling Issues,19, 31–49.

    Google Scholar 

  66. Neighbors, C., Rodriguez, L. M., Rinker, D. V., Gonzales, R. G., Agana, M., Tackett, J. L., et al. (2015). Efficacy of personalized normative feedback as a brief intervention for college student gambling: A randomized controlled trial. Journal of Consulting and Clinical Psychology,83(3), 500.

    PubMed  PubMed Central  Google Scholar 

  67. Oakes, J., Battersby, M. W., Pols, R. G., & Cromarty, P. (2008). Exposure therapy for problem gambling via videoconferencing: A case report. Journal of Gambling Studies,24(1), 107.

    PubMed  Google Scholar 

  68. Oakes, J., Pols, R., Battersby, M., Lawn, S., Pulvirenti, M., & Smith, D. (2012). A focus group study of predictors of relapse in electronic gaming machine problem gambling, part 1: Factors that ‘push’ towards relapse. Journal of Gambling Studies,28(3), 451–464.

    CAS  PubMed  Google Scholar 

  69. Parke, J., & Griffiths, M. (2006). The psychology of the fruit machine: The role of structural characteristics (revisited). International Journal of Mental Health and Addiction,4(2), 151–179. https://doi.org/10.1007/s11469-006-9014-z.

    Article  Google Scholar 

  70. Petry, N. M., Stinson, F. S., & Grant, B. F. (2005). Comorbidity of DSM-IV pathological gambling and other psychiatric disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. The Journal of Clinical Psychiatry,66(5), 564–574.

    PubMed  Google Scholar 

  71. Potenza, M. N., Fiellin, D. A., Heninger, G. R., Rounsaville, B. J., & Mazure, C. M. (2002). Gambling. Journal of General Internal Medicine,17(9), 721–732.

    PubMed  PubMed Central  Google Scholar 

  72. Productivity Commission. (1999). Australia’s gambling industries: Report No. 10. Canberra: AusInfo.

  73. Productivity Commission. (2010). Gambling (No. Report No. 50). Canberra: Productivity Commission.

  74. Queensland Government. (2018). Australian gambling statistics, 1991–92 to 2016–17 (34th ed.). Brisbane: Queensland Government Statistician’s Office, Queensland Treasury.

    Google Scholar 

  75. Raylu, N., & Oei, T. P. S. (2002). Pathological gambling: A comprehensive review. Clinical Psychology Review,22, 1009–1061.

    PubMed  PubMed Central  Google Scholar 

  76. Raylu, N., & Oei, T. P. (2004). The Gambling Urge Scale: Development, confirmatory factor validation, and psychometric properties. Psychology of Addictive Behaviors,18(2), 100.

    PubMed  Google Scholar 

  77. Saugeres, L., Thomas, A., Moore, S., & Bates, G. (2012). Gamblers tell their stories: Life patterns of gambling. Melbourne. Retrieved March 22, 2019 from https://www.responsiblegambling.vic.gov.au/__data/assets/pdf_file/0008/4031/Report-Gamblers-tell-their-story.pdf.

  78. Scannell, E. D., Quirk, M. M., Smith, K., Maddern, R., & Dickerson, M. (2000). Females’ coping styles and control over poker machine gambling. Journal of Gambling Studies,16(4), 417–432.

    CAS  PubMed  Google Scholar 

  79. Schüll, N. D. (2005). Digital gambling: The coincidence of desire and design. The Annals of the American Academy of Political and Social Science,597(1), 65–81. https://doi.org/10.1177/0002716204270435.

    Article  Google Scholar 

  80. Schüll, N. D. (2012). Addiction by design: Machine gambling in Las Vegas. Princeton: Princeton University Press.

    Google Scholar 

  81. Sharpe, L. A. (2002). Reformulated cognitive- behavioural model of problem gambling: A biopsychosocial perspective. Clinical Psychology Review,22(1), 1–25.

    PubMed  Google Scholar 

  82. Sharpe, L. A., & Tarrier, N. (1993). Towards a cognitive-behavioural theory of problem gambling. British Journal of Psychiatry,162(3), 407–412.

    CAS  PubMed  Google Scholar 

  83. Shepherd, L., & Dickerson, M. (2001). Situational coping with loss and control over gambling in regular poker machine players. Australian Journal of Psychology,53(3), 160–169.

    Google Scholar 

  84. Smith, D. P., Battersby, M. W., Pols, R. G., Harvey, P. W., Oakes, J. E., & Baigent, M. F. (2015). Predictors of relapse in problem gambling: A prospective cohort study. Journal of Gambling Studies,31(1), 299–313.

    PubMed  Google Scholar 

  85. Sodano, R., & Wulfert, E. (2010). Cue reactivity in active pathological, abstinent pathological, and regular gamblers. Journal of Gambling Studies,26, 53–65.

    PubMed  Google Scholar 

  86. Steel, Z., & Blaszczynski, A. (1998). Impulsivity, personality disorders and pathological gambling severity. Addiction,93(6), 895–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Steenbergh, T. A., Meyers, A. W., May, R. K., & Whelan, J. P. (2002). Development and validation of the Gamblers’ beliefs questionnaire. Psychology of Addictive Behaviors,16(2), 143.

    PubMed  PubMed Central  Google Scholar 

  88. Tangney, J. P., Baumeister, R. F., & Boone, A. L. (2004). High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. Journal of Personality,72(2), 271–324.

    PubMed  Google Scholar 

  89. Thomas, A. C., Allen, F. L., Phillips, J., & Karantzas, G. (2011). Gaming machine addiction: The role of avoidance, accessibility and social support. Psychology of Addictive Behaviors,25(4), 738.

    PubMed  Google Scholar 

  90. Thomas, A. C., Sullivan, G. B., & Allen, F. C. L. (2008). A theoretical model of EGM problem gambling: More than a cognitive escape. International Journal of Mental Health and Addiction,7, 97–107.

    Google Scholar 

  91. Thomas, A. C., Sullivan, G. B., & Allen, F. C. L. (2009). A theoretical model of EGM problem gambling: More than a cognitive escape. International Journal of Mental Health and Addiction,7(1), 97–107.

    Google Scholar 

  92. Toneatto, T. (1999). Cognitive psychopathology of problem gambling. Substance Use and Misuse,34, 1593–1604. https://doi.org/10.3109/10826089909039417.

    CAS  Article  Google Scholar 

  93. Toneatto, T. (2002). Cognitive therapy for problem gambling. Cognitive and Behavioral Practice,9, 191–199.

    Google Scholar 

  94. Volberg, R. A. (2003). Has there been a" feminization" of gambling and problem gambling in the United States? Journal of Gambling Issues. https://doi.org/10.4309/jgi.2003.8.7.

    Article  Google Scholar 

  95. Walker, M. B. (1992). Irrational thinking among slot machine players. Journal of Gambling Studies,8(3), 245–261.

    CAS  PubMed  Google Scholar 

  96. Welte, J., Barnes, G., Wieczorek, W., Tidwell, M. C., & Parker, J. (2001). Alcohol and gambling pathology among US adults: Prevalence, demographic patterns and comorbidity. Journal of Studies on Alcohol,62(5), 706–712.

    CAS  PubMed  Google Scholar 

  97. Welte, J. W., Barnes, G. M., Wieczorek, W. F., Tidwell, M. C. O., & Parker, J. C. (2004). Risk factors for pathological gambling. Addictive Behaviors,29(2), 323–335.

    PubMed  Google Scholar 

  98. Williams, R. J., Volberg, R. A., & Stevens, R. M. (2012a). The population prevalence of problem gambling: Methodological influences, standardized rates, jurisdictional differences, and worldwide trends. Toronto: Ontario Problem Gambling Research Centre.

    Google Scholar 

  99. Williams, R. J., West, B. L., & Simpson, R. I. (2012b). Prevention of problem gambling: A comprehensive review of the evidence and identified best practices. Toronto: Ontario Problem Gambling Research Centre and the Ontario Ministry of Health and Long Term Care.

    Google Scholar 

  100. Wulfert, E., Maxson, J., & Jardin, B. (2009). Cue-specific reactivity in experienced gamblers. Psychology of Addictive Behaviors,23, 731–735.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by internal funding from the Centre for Gambling Education and Research at Southern Cross University. The second author was a member of this Centre at the time that the data were collected.

Funding

Nerilee Hing has received research funds from the Victorian Responsible Gambling Foundation, Gambling Research Australia, Australian Government Department of Social Services, Alberta Gambling Research Institute, the Australian Gambling Research Centre, the Queensland, New South Wales, Victorian and South Australian Governments, the Australian Research Council, and Australia’s National Research Organisation for Women’s Safety. She has also received consultancy funds from Echo Entertainment and Sportsbet and an honorarium from Singapore Pools for membership of its International Advisory Committee. Alex Russell has received funding from Victorian Responsible Gambling Foundation; New South Wales State Government; Queensland Justice and Attorney-General; Gambling Research Australia; National Association for Gambling Studies; Australian Communications and Media Authority and the Alberta Gambling Research Institute. He has received industry funding for an evaluation of problem gambling amongst casino employees from Echo/Star Entertainment Group. He is also affiliated with the University of Sydney.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nerilee Hing.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Ethics approval was obtained from Southern Cross University’s Human Research Ethics Committee (approval ECN-16-092) and through reciprocal approval by CQUniversity’s Human Research Ethics Committee (approval H16/05-135).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hing, N., Russell, A.M.T. Proximal and Distal Risk Factors for Gambling Problems Specifically Associated with Electronic Gaming Machines. J Gambl Stud 36, 277–295 (2020). https://doi.org/10.1007/s10899-019-09867-8

Download citation

Keywords

  • Electronic gaming machines
  • Poker machines
  • Pokies
  • Risk factors
  • Determinants
  • Gambling harm
  • Problem gambling
  • Gambling disorder