Advertisement

Reinforcement Sensitivity Theory and Problem Gambling in a General Population Sample

  • Nicola Farrell
  • Benjamin R. WalkerEmail author
Original Paper

Abstract

This study examined the impact of revised reinforcement sensitivity theory (r-RST) on two measures of problem gambling. Using 112 general population adult participants, two measures of r-RST, the reinforcement sensitivity theory of personality questionnaire (RST-PQ) and Jackson 5, were used to predict problem gambling operationalised using the South Oaks Gambling Screen and the Iowa Gambling Task (IGT). Hypotheses were that the behavioural approach system (BAS) would positively predict problem gambling and the behavioural inhibition system (BIS) would negatively predict problem gambling. Results found that the BIS negatively predicted problem gambling. The RST-PQ BAS reward reactivity subscale positively predicted problem gambling using the IGT. These findings add to the operational understanding of the r-RST personality model, its relationships to avoidance and approach behaviour in response to reward and punishment, and to understanding the aetiology of problem gambling.

Keywords

Reinforcement sensitivity theory Reward sensitivity Punishment sensitivity Gambling Iowa Gambling Task Southern Oaks Gambling Screen 

Notes

Compliance with Ethical Standards

Conflict of interest

Author A declares that she has no conflict of interest. Author B declares that he has no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. Abdin, E., Subramaniam, M., Vaingankar, J. A., & Chong, S. (2012). Reliability and validity of the English version of the South Oaks Gambling Screen in a multiracial Asian community sample in Singapore. International Gambling Studies, 12, 275–293.  https://doi.org/10.1080/14459795.2012.669777.CrossRefGoogle Scholar
  2. Allen, P., Bennett, K., & Heritage, B. (2014). SPSS statistics version 22: A practical guide (3rd ed.). Cengage Learning South Melbourne, Australia Pty Ltd. Retrieved April 6, 2019 from https://cengage.com.au/product/title/spss-statistics-version-22-a-practical-guide/isbn/9780170348973.
  3. Balodis, S. R. S., Thomas, A. C., & Moore, S. M. (2014). Sensitivity to reward and punishment: Horse race and EGM gamblers compared. Personality and Individual Differences, 56, 29–33.  https://doi.org/10.1016/j.paid.2013.08.015.CrossRefGoogle Scholar
  4. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.  https://doi.org/10.1016/0010-0277(94)90018-3.CrossRefGoogle Scholar
  5. Brevers, D., Noël, X., He, Q., Melrose, J. A., & Bechara, A. (2016). Increased ventral-striatal activity during monetary decision making is a marker of problem poker gambling severity. Addiction Biology, 21, 688–699.  https://doi.org/10.1111/adb.12239.CrossRefGoogle Scholar
  6. Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS Scales. Journal of Personality and Social Psychology, 67, 319–333.  https://doi.org/10.1037/0022-3514.67.2.319.CrossRefGoogle Scholar
  7. Ciccarelli, M., Griffiths, M., Nigro, G., & Cosenza, M. (2017). Decision making, cognitive distortions and emotional distress: A comparison between pathological gamblers and healthy controls. Journal of Behavior Therapy and Experimental Psychiatry, 54, 204–210.  https://doi.org/10.1016/j.jbtep.2016.08.012.CrossRefGoogle Scholar
  8. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  9. Collins, M. D., Jackson, C. J., Walker, B. R., O’Connor, P. J., & Gardiner, E. (2017). Integrating the context-appropriate balanced attention model and reinforcement sensitivity theory: Towards a domain-general personality process model. Psychological Bulletin, 143, 91–106.  https://doi.org/10.1037/bul0000082.CrossRefGoogle Scholar
  10. Corr, P. J. (2016). Reinforcement sensitivity theory of personality questionnaires: structural survey with recommendations. Personality and Individual Differences, 89, 60–64.  https://doi.org/10.1016/j.paid.2015.09.045.CrossRefGoogle Scholar
  11. Corr, P. J., & Cooper, A. (2016). The reinforcement sensitivity theory of personality questionnaire (RST-PQ): Development and validation. Psychological Assessment, 28, 1427–1440.  https://doi.org/10.1037/pas0000273.CrossRefGoogle Scholar
  12. Corr, P. J., & Thompson, S. J. (2014). Pause for thought: Response perseveration and personality in gambling. Journal of Gambling Studies, 30, 889–900.  https://doi.org/10.1007/s10899-013-9395-4.CrossRefGoogle Scholar
  13. Costumero, V., Barros-Loscertales, A., Fuentes, P., Rosell-Negre, P., Bustamante, J. C., & Avila, C. (2016). BAS-drive trait modulates dorsomedial striatum activity during reward response-outcome associations. Brain Imaging and Behavior, 10, 869–879.  https://doi.org/10.1007/s11682-015-9466-5.CrossRefGoogle Scholar
  14. Farrell, N., & Walker, B. R. (2019). Reinforcement sensitivity theory and the 2 × 2 standpoints model of achievement goals. Personality and Individual Differences, 139, 317–320.  https://doi.org/10.1016/j.paid.2018.11.035.CrossRefGoogle Scholar
  15. Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). London: Sage.Google Scholar
  16. Gaher, R. M., Hahn, A. M., Shishido, H., Simons, J. S., & Gaster, S. (2015). Associations between sensitivity to punishment, sensitivity to reward, and gambling. Addictive Behaviors, 42, 180–184.  https://doi.org/10.1016/j.addbeh.2014.11.014.CrossRefGoogle Scholar
  17. Goodie, A. S., & Fortune, E. E. (2013). Measuring cognitive distortions in pathological gambling: Review and meta-analyses. Psychology of Addictive Behaviours, 27, 730–743.  https://doi.org/10.1037/a0031892.CrossRefGoogle Scholar
  18. Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety: An enquiry into the funtions of the septo-hippocampal system (2nd ed.). Oxford: Oxford University Press. Retrieved April 6, 2019 from http://stoa.usp.br/vahs/files/-1/16169/Gray+e+McNaughton+-+Neuropsychology+of+Anxiety.pdf.
  19. Jackson, C. J. (2009). Jackson-5 scales of revised reinforcement sensitivity theory (r-RST) and their application to dysfunctional real-world outcomes. Journal of Research in Personality, 43, 556–569.  https://doi.org/10.1016/j.jrp.2009.02.007.CrossRefGoogle Scholar
  20. Jackson, C. J. (2011). How sensation seeking provides a common basis for functional and dysfunctional outcomes. Journal of Research in Personality, 45, 29–36.  https://doi.org/10.1016//j.jrp.2010.11.005.CrossRefGoogle Scholar
  21. Jiang, Y., & Tiliopoulos, N. (2014). Individual differences in adult attachment and reinforcement sensitivity. Personality and Individual Differences, 68, 205–210.  https://doi.org/10.1016/j.paid.2014.04.022.CrossRefGoogle Scholar
  22. Jiminez-Murcia, S., Fernandez-Aranda, F., Mestre-Bach, G., Granero, R., Tarrega, S., Torrubia, R., et al. (2017). Exploring the relationship between reward and punishment sensitivity and gambling disorder in a clinical sample: A path modeling analysis. Journal of Gambling Studies, 33, 579–597.  https://doi.org/10.1007/s10899-016-9631-9.CrossRefGoogle Scholar
  23. Keough, M. T., Wardell, J. D., Hendershot, C. S., Bagby, R. M., & Quilty, L. C. (2017). Fun seeking and reward responsiveness moderate the effect of the behavioural inhibition system on coping-motivated problem gambling. Journal of Gambling Studies, 33, 769–782.  https://doi.org/10.1007/s10899-016-9646-2.CrossRefGoogle Scholar
  24. Kim, D. Y., & Lee, J. H. (2011). Effects of the BAS and BIS on decision-making in a gambling task. Personality and Individual Differences, 50, 1131–1135.  https://doi.org/10.1016/j.paid.2011.01.041.CrossRefGoogle Scholar
  25. Kramer, S., Rodriguez, B. F., & Kertz, S. J. (2015). Predicting socially anxious group membership using reinforcement sensitivity theory. Personality and Individual Differences, 86, 474–476.  https://doi.org/10.1016/j.paid.2015.06.053.CrossRefGoogle Scholar
  26. Krupic, D., Corr, P. J., Rucevic, S., Krizanic, V., & Gracanin, A. (2016a). Five reinforcement sensitivity theory (RST) of personality questionnaires: Comparison, validity and generalization. Personality and Individual Differences, 97, 19–24.  https://doi.org/10.1016/j.paid.2016.03.012.CrossRefGoogle Scholar
  27. Krupic, D., Gracanin, A., & Corr, P. J. (2016b). The evolution of the behavioural approach system (BAS): Cooperative and competitive resource acquisition strategies. Personality and Individual Differences, 94, 223–227.  https://doi.org/10.1016/j.paid.2016.01.044.CrossRefGoogle Scholar
  28. Lakey, C. E., Goodie, A. S., & Campbell, W. K. (2007). Frequent card playing and pathological gambling: The utility of the Georgia Gambling Task and Iowa Gambling Task for predicting pathology. Journal of Gambling Studies, 23, 285–297.  https://doi.org/10.1007/s10899-006-9034-4.CrossRefGoogle Scholar
  29. Lesieur, H. R., & Blume, S. B. (1987). The South Oaks Gambling Screen (SOGS): A new instrument for the identification of pathological gamblers. American Journal of Psychiatry, 144, 1184–1188.  https://doi.org/10.1176/ajp.144.9.1184.CrossRefGoogle Scholar
  30. MacLaren, V., Ellery, M., & Knoll, T. (2015). Personality, gambling motives and cognitive distortions in electronic gambling machine players. Personality and Individual Differences, 73, 24–28.  https://doi.org/10.1016/j.paid.2014.09.019.CrossRefGoogle Scholar
  31. Montoresso, J., Ehrman, R., Napier, K., O’Brien, C. P., & Chidress, A. R. (2001). Three decision making tasks in cocaine dependent patients: Do they measure the same construct? Addiction, 96, 1825–1837.  https://doi.org/10.1080/09652140120089571.CrossRefGoogle Scholar
  32. O’Connor, P. J., Stone, S., Walker, B. R., & Jackson, C. J. (2017). Deviant behavior in constrained environments: Sensation-seeking predicts workplace deviance in shallow learners. Personality and Individual Differences, 108, 20–25.  https://doi.org/10.1016/j.paid.2016.11.062.CrossRefGoogle Scholar
  33. Rollwage, M., Comtesse, H., & Stemmler, G. (2017). Risky economic choices and frontal EEG asymmetry in the context of reinforcer-sensitivity-theory-5. Cognitive Affective & Behavioral Neuroscience, 17, 984–1001.  https://doi.org/10.3758/s13415-017-0527-7.CrossRefGoogle Scholar
  34. Shahzadi, K., & Walker, B. R. (2019). Reinforcement sensitivity theory and relationship satisfaction via mastery. Personality and Individual Differences, 139, 46–52.  https://doi.org/10.1016/j.paid.2018.11.007.CrossRefGoogle Scholar
  35. Smederevac, S., Mitrovic, D., Colovic, P., & Nikolasevic, Z. (2014). Validation of the measure of revised reinforcement sensitivity theory constructs. Journal of Individual Differences, 35, 12–21.  https://doi.org/10.1027/1614-0001/a000121.CrossRefGoogle Scholar
  36. Smillie, L. D., & Jackson, C. J. (2006). Functional impulsivity and reinforcement sensitivity theory. Journal of Personality, 74, 47–83.  https://doi.org/10.1111/j.1467-6494.2005.00369.x.CrossRefGoogle Scholar
  37. Smillie, L. D., Jackson, C. J., & Dalgleish, L. I. (2006). Conceptual distinctions among Carver and White’s (1994) BAS scales: A reward-reactivity versus trait impulsivity perspective. Personality and Individual Differences, 40, 1039–1050.  https://doi.org/10.1016/j.paid.2005.10.012.CrossRefGoogle Scholar
  38. Stoeber, J., & Corr, P. J. (2015). Perfectionism, personality, and affective experiences: New insights from revised reinforcement sensitivity theory. Personality and Individual Differences, 86, 354–359.  https://doi.org/10.1016/j.paid.2015.06.045.CrossRefGoogle Scholar
  39. Tabachnick, B. G., & Fidell, L. S. (2014). Using multivariate statistics: Pearson new international (6th ed.). Boston, MA: Pearson Education.Google Scholar
  40. Torrubia, R., Avila, C., Molto, J., & Caseras, X. (2001). The sensitivity to punishment and sensitivity reward questionnaire (SPSRQ) as a measure of Gray’s anxiety and impulsivity dimensions. Personality and Individual Differences, 31, 837–862.  https://doi.org/10.1016/S0191-8869(00)00183-5.CrossRefGoogle Scholar
  41. Turnbull, O. H., Evans, C. E. Y., Bunce, A., Carzolio, B., & O’Connor, J. (2004). Emotion-based learning and central executive resources: An investigation of intuition and the Iowa Gambling Task. Brain and Cognition, 57, 244–247.  https://doi.org/10.1016/j.bandc.2004.08.053.CrossRefGoogle Scholar
  42. Verdejo-Garcia, A., & Bechara, A. (2009). A somatic marker theory of addiction. Neuropharmacology, 56, 48–62.  https://doi.org/10.1016/j.neuropharm.2008.07.035.CrossRefGoogle Scholar
  43. Verdejo-Garcia, A., Bechara, A., Recknore, E. C., & Perez-Garcia, M. (2006). Decision-making and the Iowa Gambling Task: Ecological validity in individuals with substance dependence. Psychologica Belgica, 46, 55–78.  https://doi.org/10.5334/pb-46-1-2-55.CrossRefGoogle Scholar
  44. Verdejo-Garcia, A., Benbrook, A., Funderburk, F., David, P., Cadet, J. L., & Bolla, K. I. (2007). The differential relationship between cocaine use and marijuana use on decision-making performance over repeat testing with the Iowa Gambling Task. Drug and Alcohol Dependence, 90, 2–11.  https://doi.org/10.1016/j.drugalcdep.2007.02.004.CrossRefGoogle Scholar
  45. Walker, B. R., & Jackson, C. J. (2014). How the five-factor model and revised reinforcement sensitivity theory predict divergent thinking. Personality and Individual Differences, 57, 54–58.  https://doi.org/10.1016/j.paid.2013.09.011.CrossRefGoogle Scholar
  46. Walker, B. R., & Jackson, C. J. (2016). Examining the validity of the revised reinforcement sensitivity theory scales. Personality and Individual Differences, 106, 90–94.  https://doi.org/10.1016/j.paid.2016.10.035.CrossRefGoogle Scholar
  47. Walker, B. R., Jackson, C. J., & Frost, R. (2017). A comparison of revised reinforcement sensitivity theory with other contemporary personality models. Personality and Individual Differences, 109, 232–236.  https://doi.org/10.1016/j.paid.2016.12.053.CrossRefGoogle Scholar
  48. Wardell, J. D., Quilty, L. C., Hendershot, C. S., & Bagby, R. M. (2015). Motivational pathways from reward sensitivity and punishment sensitivity to gambling frequency and gambling-related problems. Psychology of Addictive Behaviors, 29, 1022–1030.  https://doi.org/10.1037/adb0000066.CrossRefGoogle Scholar
  49. Wiehler, A., & Peters, J. (2015). Reward-based decision making in pathological gambling: The roles of risk and delay. Neuroscience Research, 90, 3–14.  https://doi.org/10.1016/j.neures.2014.09.008.CrossRefGoogle Scholar
  50. Yang, Y., Zhong, X., Wu, D., Li, H., & Li, M. (2016). Positive association between trait impulsivity and high gambling-related cognitive biases among college students. Psychiatry Research, 243, 71–74.  https://doi.org/10.1016/j.psychres.2016.04.110.CrossRefGoogle Scholar
  51. Zuckerman, M. (1994). Behavioral expressions and biosocial bases of sensation seeking. New York: Cambridge University Press. Retrieved April 6, 2019 from http://www.cambridge.org/us/academic/subjects/life-sciences/animal-behaviour/behavioral-expressions-and-biosocial-bases-sensation-seeking?format=PB&isbn=9780521437707.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Psychological SciencesMonash UniversityClaytonAustralia

Personalised recommendations