Identifying Environmental and Social Factors Predisposing to Pathological Gambling Combining Standard Logistic Regression and Logic Learning Machine

  • Stefano Parodi
  • Corrado Dosi
  • Antonella Zambon
  • Enrico Ferrari
  • Marco Muselli
Original Paper
  • 86 Downloads

Abstract

Identifying potential risk factors for problem gambling (PG) is of primary importance for planning preventive and therapeutic interventions. We illustrate a new approach based on the combination of standard logistic regression and an innovative method of supervised data mining (Logic Learning Machine or LLM). Data were taken from a pilot cross-sectional study to identify subjects with PG behaviour, assessed by two internationally validated scales (SOGS and Lie/Bet). Information was obtained from 251 gamblers recruited in six betting establishments. Data on socio-demographic characteristics, lifestyle and cognitive-related factors, and type, place and frequency of preferred gambling were obtained by a self-administered questionnaire. The following variables associated with PG were identified: instant gratification games, alcohol abuse, cognitive distortion, illegal behaviours and having started gambling with a relative or a friend. Furthermore, the combination of LLM and LR indicated the presence of two different types of PG, namely: (a) daily gamblers, more prone to illegal behaviour, with poor money management skills and who started gambling at an early age, and (b) non-daily gamblers, characterised by superstitious beliefs and a higher preference for immediate reward games. Finally, instant gratification games were strongly associated with the number of games usually played. Studies on gamblers habitually frequently betting shops are rare. The finding of different types of PG by habitual gamblers deserves further analysis in larger studies. Advanced data mining algorithms, like LLM, are powerful tools and potentially useful in identifying risk factors for PG.

Keywords

Problem gambling Logic Learning Machine Logistic regression ROC analysis 

Supplementary material

10899_2017_9679_MOESM1_ESM.docx (41 kb)
Supplementary material 1 (DOCX 40 kb)

References

  1. Abbott, M., Bellringer, M., Garrett, N., & Mundy-McPherson, S. (2012). New Zealand 2012 national gambling study: Gambling harm and problem gambling—Report Number 2. Gambling and Addiction Research Centre, National Institute for Public Health and Mental Health Research, Auckland (New Zealand).Google Scholar
  2. Abbott, M., Stone, C. A., Billi, R., & Yeung, K. (2016). Gambling and problem gambling in Victoria, Australia: Changes over 5 years. Journal of Gambling Studies, 32(1), 47–78. doi:10.1007/s10899-015-9542-1.CrossRefPubMedGoogle Scholar
  3. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington: American Psychiatric Association.CrossRefGoogle Scholar
  4. Ashley, L. L., & Boehlke, K. K. (2012). Pathological gambling: A general overview. Journal of Psychoactive Drugs, 44(1), 27–37. doi:10.1080/02791072.2012.662078.CrossRefPubMedGoogle Scholar
  5. Bastiani, L., Gori, M., Colasante, E., Siciliano, V., Capitanucci, D., Jarre, P., et al. (2013). Complex factors and behaviors in the gambling population of Italy. Journal of Gambling Studies, 29(1), 1–13. doi:10.1007/s10899-011-9283-8.CrossRefPubMedGoogle Scholar
  6. Black, D. W., McCormick, B., Losch, M. E., Shaw, M., Lutz, G., & Allen, J. (2012). Prevalence of problem gambling in Iowa: Revisiting Shaffer’s adaptation hypothesis. Annals of Clinical Psychiatry, 24(4), 279–284.PubMedPubMedCentralGoogle Scholar
  7. Blaszczynski, A., & Nower, L. (2002). A pathways model of problem and pathological gambling. Addiction, 97(5), 487–499. doi:10.1046/j.1360-0443.2002.00015.x.CrossRefPubMedGoogle Scholar
  8. Cangelosi, D., Muselli, M., Parodi, S., Blengio, F., Becherini, P., Versteeg, R., et al. (2014). Use of attribute driven incremental discretization and Logic Learning Machine to build a prognostic classifier for neuroblastoma patients. BMC Bioinformatics, 15(Suppl 5), S4. doi:10.1186/1471-2105-15-S5-S4.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Clayton, D. G. (2009). Prediction and interaction in complex disease genetics: Experience in type 1 diabetes. PLoS Genetics. doi:10.1371/journal.pgen.1000540.PubMedPubMedCentralGoogle Scholar
  10. Cristianini, N., & Taylor, J. S. (2000). An introduction to support vector machines and other kernel-based methods. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  11. Croce, M., & Nanni, W. (2004). Le dipendenze senza sostanze in Vuoti a perdere “The substances employed without returnable” (Report No: V Caritas sulle nuove poverta`). Feltrinelli: Milano.Google Scholar
  12. Dowling, N. A., Cowlishaw, S., Jackson, A. C., Merkouris, S. S., Francis, K. L., & Christensen, D. R. (2015). Prevalence of psychiatric co-morbidity in treatment-seeking problem gamblers: A systematic review and meta-analysis. Australian and New Zealand Journal of Psychiatry, 49(6), 519–539. doi:10.1177/0004867415575774.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ferrari, E., & Muselli, M. (2010). Maximizing pattern separation in discretizing continuous features for classification purposes. In Neural Networks (IJCNN), The 2010 International Joint Conference on, 18–23 July 2010.Google Scholar
  14. Fiasco, M. (2010). Verso l’economia del gioco “Towards the game economy”. Il redattore sociale.Google Scholar
  15. Gaissmaier, W., Wilke, A., Scheibehenne, B., McCanney, P., & Barrett, H. C. (2016). Betting on Illusory Patterns: Probability Matching in Habitual Gamblers. Journal of Gambl Studies, 32(1), 143–156. doi:10.1007/s10899-015-9539-9.CrossRefGoogle Scholar
  16. Goodie, A. S., MacKillop, J., Miller, J. D., Fortune, E. E., Maples, J., Lance, C. E., et al. (2013). Evaluating the South Oaks Gambling Screen with DSM-IV and DSM-5 criteria: Results from a diverse community sample of gamblers. Assessment, 20(5), 523–531. doi:10.1177/1073191113500522.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hodgins, D. C., Stea, J. N., & Grant, J. E. (2011). Gambling disorders. The Lancet, 378(9806), 1874–1884. doi:10.1016/S0140-6736(10)62185-X.CrossRefGoogle Scholar
  18. Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). New York: Wiley.CrossRefGoogle Scholar
  19. Iliceto, P., D’Antuono, L., Bowden-Jones, H., Giovani, E., Giacolini, T., Candilera, G., et al. (2016). Brain emotion systems, personality, hopelessness, self/other perception, and gambling cognition: A structural equation model. Journal of Gambling Studies, 32(1), 157–169. doi:10.1007/s10899-015-9543-0.CrossRefPubMedGoogle Scholar
  20. Janes, H., Longton, G., & Pepe, M. (2009). Accommodating covariates in ROC analysis. The Stata Journal, 9(1), 17–39.PubMedPubMedCentralGoogle Scholar
  21. Johansson, A., Grant, J. E., Kim, S. W., Odlaug, B. L., & Götestam, K. G. (2009). Risk factors for problematic gambling: A critical literature review. Journal of Gambling Studies, 25(1), 67–92. doi:10.1007/s10899-008-9088-6.CrossRefPubMedGoogle Scholar
  22. Johnson, E. E., Hamer, R., Nora, R. M., Tan, B., Eisenstein, N., & Engelhart, C. (1997). The Lie/Bet questionnaire for screening pathological gamblers. Psychological Reports, 80(1), 83–88. doi:10.2466/pr0.1997.80.1.83.CrossRefPubMedGoogle Scholar
  23. Kleinbaum, D. G., Kupper, L. L., & Morgenstern, H. (1982). Typology of Observational Study Design. In D. G. Kleinbaum, L. L. Kupper, & H. Morgenstern (Eds.), Epidemiologic Research (pp. 62–95). Belmont: Lifetime Learning Publications.Google Scholar
  24. Kleinbaum, D. G., Kupper, L. L., Muller, K. E., & Nizam, A. (1998). Applied regression analysis and other multivariable methods. Pacific Grove: Duxbury Press.Google Scholar
  25. Lavrac, N., Flach, P., & Zupan, B. (1999). Rule Evaluation Measures: A unifying View. Lecture Notes in Computer Science (Vol. 1634, pp. 174–185). Berlin: Springer.Google Scholar
  26. Lesieur, H. R. (2001). Cluster analysis of types of inpatient pathological gamblers. Dissertation Abstracts International, 62(4-B), 2065.Google Scholar
  27. Lesieur, H. R., & Blume, S. B. (1987). The South Oaks Gambling Screen (SOGS): A new instrument for the identification of pathological gamblers. American Journal of Psychiatry, 144, 1184–1188. doi:10.1176/ajp.144.9.1184.CrossRefPubMedGoogle Scholar
  28. McIntosh, M. W., & Pepe, M. S. (2002). Combining several screening tests: Optimality of the risk score. Biometrics, 58(3), 657–664. doi:10.1111/j.0006-341X.2002.00657.x.CrossRefPubMedGoogle Scholar
  29. Michie, D., Spiegelhalter, D., & Taylor, C. (1994). Machine Learning: Neural and Statistical Classification. New York: Ellis Horwood.Google Scholar
  30. Milosevic, A., & Ledgerwood, D. M. (2010). The subtyping of pathological gambling: A comprehensive review. Clinical Psychology Review, 30(8), 988–998. doi:10.1016/j.cpr.2010.06.013.CrossRefPubMedGoogle Scholar
  31. Mordenti, M., Ferrari, E., Pedrini, E., Fabbri, N., Campanacci, L., Muselli, M., et al. (2013). Validation of a new multiple osteochondromas classification through Switching Neural Networks. American Journal of Medical Genetics A, 161A, 556–560. doi:10.1002/ajmg.a.35819.CrossRefGoogle Scholar
  32. Muselli, M. (2006). Switching neural networks: A new connectionist model for classification. In B. Apolloni, M. Marinaro, G. Nicosia, & R. Tagliaferri (Eds.), WIRN 2005 and NAIS 2005, Lecture Notes in Computer Science (Vol. 3931, pp. 23–30). Berlin: Springer.Google Scholar
  33. Muselli, M., Costacurta, M., & Ruffino, F. (2009). Evaluating switching neural networks through artificial and real gene expression data. Artificial Intelligence in Medicine, 45, 163–171. doi:10.1016/j.artmed.2008.08.002.CrossRefPubMedGoogle Scholar
  34. Muselli, M., & Ferrari, E. (2011). Coupling Logical Analysis of Data and Shadow Clustering for partially defined positive Boolean function reconstruction. IEEE Transactions on Knowledge and Data Engineering, 23, 37–50. doi:10.1177/1073191113500522.CrossRefGoogle Scholar
  35. Parodi, S., Filiberti, R., Marroni, P., Libener, R., Ivaldi, G. P., Mussap, M., et al. (2015). Differential diagnosis of pleural mesothelioma using Logic Learning Machine. BMC Bioinformatics, 16(Suppl 9), S3. doi:10.1186/1471-2105-16-S9-S3.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Parodi, S., Manneschi, C., Verda, D., Ferrari, E., & Muselli, M. (2016). Logic Learning Machine and standard supervised methods for Hodgkin’s lymphoma prognosis using gene expression data and clinical variables. Health Informatics Journal (in press).Google Scholar
  37. Pepe, M. S. (2003). The statistical evaluation of medical tests for classification and prediction. Oxford: Oxford University Press.Google Scholar
  38. Public Health Agency of Sweden. (2014). Key results from the Swelogs in-depth study—A report on problem gambling and health. Swelogs Fact Sheet 18—Technical Report. https://www.folkhalsomyndigheten.se/publicerat-material/publikationsarkiv/s/Swelogs-facts-sheet-no-18-2014-Key-results-from-the-Swelogs-in-depth-study. Accessed Jan 19, 2017.
  39. Shaffer, H. J., & Martin, R. (2011). Disordered gambling: Etiology, trajectory, and clinical considerations. Annual Review of Clinical Psychology, 7, 483–510. doi:10.1146/annurev-clinpsy-040510-143928.CrossRefPubMedGoogle Scholar
  40. Williams, R. J., Volberg, R. A., & Stevens, R. M. G. (2012). The population prevalence of problem gambling: Methodological influences, standardized rates, jurisdictional differences, and worldwide trends. Report prepared for the Ontario Problem Gambling Research Centre and the Ontario Ministry of Health and Long Term Care. May 8, 2012.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Electronics, Computer and Telecommunication EngineeringNational Research Council of ItalyGenoaItaly
  2. 2.Agenzia ScommessePunto SNAIGenoaItaly
  3. 3.Department of Statistics and Quantitative Methods, Division of Biostatistics, Epidemiology and Public HealthUniversity of Milano-BicoccaMilanItaly
  4. 4.IMPARA SrlGenoaItaly

Personalised recommendations