Journal of Gambling Studies

, Volume 31, Issue 3, pp 965–986 | Cite as

Setting Win Limits: An Alternative Approach to “Responsible Gambling”?

  • Douglas M. WalkerEmail author
  • Stephen W. Litvin
  • Russell S. Sobel
  • Renée A. St-Pierre
Original Paper


Social scientists, governments, and the casino industry have all emphasized the need for casino patrons to “gamble responsibly.” Strategies for responsible gambling include self-imposed time limits and loss limits on gambling. Such strategies help prevent people from losing more than they can afford and may help prevent excessive gambling behavior. Yet, loss limits also make it more likely that casino patrons leave when they are losing. Oddly, the literature makes no mention of “win limits” as a potential approach to responsible gambling. A win limit would be similar to a loss limit, except the gambler would leave the casino upon reaching a pre-set level of winnings. We anticipate that a self-imposed win limit will reduce the gambler’s average loss and, by default, also reduce the casino’s profit. We test the effect of a self-imposed win limit by running slot machine simulations in which the treatment group of players has self-imposed and self-enforced win and loss limits, while the control group has a self-imposed loss limit or no limit. We find that the results conform to our expectations: the win limit results in improved player performance and reduced casino profits. Additional research is needed, however, to determine whether win limits could be a useful component of a responsible gambling strategy.


Responsible gambling Loss limits Win limits Mental accounting 



We are grateful to Jeffrey Derevensky, Ph.D. for helpful comments and suggestions.


  1. Adams, P. J., Raeburn, J., & Silva, K. D. (2009). A question of balance: Prioritizing public health responses to harm from gambling. Addiction, 104(5), 688–691.CrossRefPubMedGoogle Scholar
  2. American Gaming Association. (2008). Responsible gaming statutes and regulations (3rd ed.). Washington, DC: Author.Google Scholar
  3. Auer, M., & Griffiths, M. D. (2013). Voluntary limit setting and player choice in most intense online gamblers: An empirical study of gambling behavior. Journal of Gambling Studies, 29, 647–660. doi: 10.1007/s10899-012-9332-y.CrossRefPubMedGoogle Scholar
  4. Becker, G. S., & Murphy, K. M. (1988). A theory of rational addiction. Journal of Political Economy, 96(4), 675–700.CrossRefGoogle Scholar
  5. Blaszczynski, A., Gainsbury, S., & Karlov, L. (2013). Blue Gum gaming machine: An evaluation of responsible gambling features. Journal of Gambling Studies. Advance online publication. doi: 10.1007/s10899-013-9378-5.
  6. Blaszczynski, A., Ladouceur, R., & Shaffer, H. J. (2004). A science-based framework for responsible gambling: The Reno model. Journal of Gambling Studies, 20, 301–317. doi: 10.1023/B:JOGS.0000040281.49444.CrossRefPubMedGoogle Scholar
  7. Broda, A., LaPlante, D. A., Nelson, S. E., LaBrie, R. A., Bosworth, L. B., & Shaffer, H. J. (2008). Virtual harm reduction efforts for internet gambling: Effects of deposit limits on actual internet sports gambling behavior. Harm Reduction Journal, 5, 27–36. doi: 10.1186/1477-7517-5-27.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Cantinotti, M., & Ladouceur, R. (2008). Harm reduction and electronic gambling machines: Does this pair make a happy couple or is divorce foreseen? Journal of Gambling Studies, 24, 39–54. doi: 10.1007/s10899-007-9072-6.CrossRefPubMedGoogle Scholar
  9. Corporate Research Associates. (2006). Video lottery program changes Nova Scotia: Impact analysis. Retrieved from
  10. Currie, S. R., Hodgins, D. C., Wang, J., el-Guebaly, N., & Wynne, H. (2008). In pursuit of empirically based responsible gambling limits. International Gambling Studies, 8, 207–227. doi: 10.1080/14459790802172265.CrossRefGoogle Scholar
  11. Derevensky, J. L., Gupta, R., Dickson, L., & Deguire, A.-E. (2004). Prevention efforts toward reducing gambling problems. In J. L. Derevensky & R. Gupta (Eds.), Gambling problems in youth (pp. 211–230). New York, NY: Springer.Google Scholar
  12. Friedman, M., & Savage, L. J. (1948). The utility analysis of choices involving risk. Journal of Political Economy, 56(4), 279–304.CrossRefGoogle Scholar
  13. Griffiths, M. D., Wood, R. T. A., & Parke, J. (2009). Social responsibility tools in online gambling: A survey of attitudes and behavior among Internet gamblers. CyberPsychology & Behavior, 12, 413–421. doi: 10.1089/cpb.2009.0062 CrossRefGoogle Scholar
  14. Hannum, R. C., & Cabot, A. N. (2005). Practical casino math (2nd ed.). Las Vegas, NV: Trace Publications.Google Scholar
  15. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–291.CrossRefGoogle Scholar
  16. Korn, D. A., & Shaffer, H. J. (1999). Gambling and the health of the public: Adopting a public health perspective. Journal of Gambling Studies, 15, 289–365. doi: 10.1023/A:1023005115932.CrossRefPubMedGoogle Scholar
  17. Ladouceur, R., Blaszczynski, A., & Lalande, D. R. (2012). Pre-commitment in gambling: A review of the empirical evidence. International Gambling Studies, 12, 215–230. doi: 10.1080/14459795.2012.658078.CrossRefGoogle Scholar
  18. Ladouceur, R., & Sévigny, S. (2009). Electronic gambling machines: Influence of a clock, a cash display, and a precommitment on gambling time. Journal of Gambling Issues, 23, 23–41. doi: 10.4309/jgi.2009.23.2.CrossRefGoogle Scholar
  19. Lalande, D. R., & Ladouceur, R. (2011). Can cybernetics inspire gambling research? A limit-based conceptualization. International Gambling Studies, 11, 237–252. doi: 10.1080/14459795.2011.598540.CrossRefGoogle Scholar
  20. Lund, I. (2009). Gambling behavior and the prevalence of gambling problems in adult EGM gamblers when EGMs are banned. A natural experiment. Journal of Gambling Studies, 25, 215–225. doi: 10.1007/s10899-009-9127-y.CrossRefPubMedGoogle Scholar
  21. Maremont, M., & Berzon, A. (2013, October 11). How often do gamblers really win? New data provides some answers on the real odds for gambling, Wall Street Journal (online, Scholar
  22. Moore, S. M., Thomas, A. C., Kyrios, M., & Bates, G. (2012). The self-regulation of gambling. Journal of Gambling Studies, 28, 405–420. doi: 10.1007/s10899-011-9265-x.CrossRefPubMedGoogle Scholar
  23. Nelson, S. E., LaPlante, D. A., Peller, A. J., Schumann, A., LaBrie, R. A., & Shaffer, H. J. (2008). Real limits in the virtual world: Self-limiting behavior of internet gamblers. Journal of Gambling Studies, 24, 463–477. doi: 10.1007/s10899-008-9106-8.CrossRefPubMedGoogle Scholar
  24. Orford, J., Wardle, H., & Griffiths, M. (2013). What proportion of gambling is problem gambling? Estimates from the 2010 British Gambling Prevalence Survey. International Gambling Studies, 13, 4–18. doi: 10.1080/14459795.2012.689001.CrossRefGoogle Scholar
  25. Petry, N. M., Blanco, C., Auriacombe, M., Borges, G., Bucholz, K., Crowley, T. J., et al. (2013). An overview of an rationale for changes proposed for pathological gambling in DSM-5. Journal of Gambling Studies. Advance online publication. doi: 10.1007/s10899-013-9370-0.
  26. Responsible Gambling Trust. (2013). Corporate social responsibility. Retrieved from:
  27. Schneider, M. E. (2004). The everything casino gambling book: Feel confident, have fun, and win big! (2nd ed.). Avon, MA: Adams Media.Google Scholar
  28. Schottler Consutling. (2010). Major findings and implications: Player tracking and pre-commitment trial: A program and outcome evaluation of the PlaySmart precommitment system. Retrieved from
  29. Shaffer, H., Martin, R., Kleschinsky, J., & Neporent, L. (2012). Change your gambling, change your life. San Francisco, CA: Jossey-Bass.Google Scholar
  30. St-Pierre, R. A., Walker, D. M., Derevensky, J., & Gupta, R. (in press). How availability and accessibility of gambling venues influence problem gambling: A review of the literature. Gaming Law Review and Economics, 18(1) (Forthcoming).Google Scholar
  31. Thaler, R. H., & Johnson, E. J. (1990). Gambling with the house money and trying to break even: The effects of prior outcomes on risky choice. Management Science, 36(6), 643–660.CrossRefGoogle Scholar
  32. Walker, D. M., & Calcagno, P. T. (2013). Casinos and political corruption in the United States: A Granger causality analysis. Applied Economics, 45, 4781–4795. doi: 10.1080/00036846.2013.804171.CrossRefGoogle Scholar
  33. Williams, R. J., West, B. L., & Simpson, R. I. (2007). Prevention of problem gambling: A comprehensive review of the evidence. Guelph, ON: Ontario Problem Gambling Research Centre.Google Scholar
  34. Wohl, M. J. A., Gainsbury, S., Stewart, M. J., & Sztainert, T. (2013). Facilitating responsible gambling: The relative effectiveness of education-based animation and monetary limit setting pop-up messages among electronic gaming machine players. Journal of Gambling Studies, 29, 703–717. doi: 10.1007/s10899-012-9340-y.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Wood, R. T. A., Shorter, G. W., & Griffiths, M. D. (2014). Rating the suitability of responsible gambling features for specific game types: A resource for optimizing responsible gambling strategy. International Journal of Mental Health and Addiction, 12, 94–112. doi: 10.1007/s11469-013-9473-y.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Douglas M. Walker
    • 1
    Email author
  • Stephen W. Litvin
    • 2
  • Russell S. Sobel
    • 3
  • Renée A. St-Pierre
    • 4
  1. 1.Department of Economics, School of BusinessCollege of CharlestonCharlestonUSA
  2. 2.Department of Hospitality and Tourism Management, School of BusinessCollege of CharlestonCharlestonUSA
  3. 3.School of Business AdministrationThe CitadelCharlestonUSA
  4. 4.International Centre for Youth Gambling Problems and High-Risk BehaviorsMcGill UniversityMontrealCanada

Personalised recommendations