Journal of Gambling Studies

, Volume 31, Issue 2, pp 441–454 | Cite as

Are Poker Players All the Same? Latent Class Analysis

Original Paper

Abstract

Poker is the gambling game that is currently gaining the most in popularity. However, there is little information on poker players’ characteristics and risk factors. Furthermore, the first studies described poker players, often recruited in universities, as an homogeneous group who played in only one of the modes (land based or on the Internet). This study aims to identify, through latent class analyses, poker player subgroups. A convenience sample of 258 adult poker players was recruited across Quebec during special events or through advertising in various media. Participants filled out a series of questionnaires (Canadian Problem Gambling Index, Beck Depression, Beck Anxiety, erroneous belief and alcohol/drug consumption). The latent class analysis suggests that there are three classes of poker players. Class I (recreational poker players) includes those who have the lowest probability of engaging intensively in different game modes. Participants in class II (Internet poker players) all play poker on the Internet. This class includes the highest proportion of players who consider themselves experts or professionals. They make a living in part or in whole from poker. Class III (multiform players) includes participants with the broadest variety of poker patterns. This group is complex: these players are positioned halfway between professional and recreational players. Results indicate that poker players are not an homogeneous group identified simply on the basis of the form of poker played. The specific characteristics associated with each subgroup points to vulnerabilities that could potentially be targeted for preventive interventions.

Keywords

Poker players Latent class analysis Gambling patterns Poker gambling problems Impulsivity Erroneous beliefs 

References

  1. Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety: Psychometric properties. Journal of Consulting and Clinical Psychology,. doi:10.1037/0022-006X.56.6.893.PubMedGoogle Scholar
  2. Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck Depression Inventory (2nd ed.). San Antonio, TX: The Psychological Corporation.Google Scholar
  3. Bjerg, O. (2010). Problem gambling in poker: Money, rationality and control in a skill-based social game. International Gambling Studies,. doi:10.1080/14459795.2010.520330.Google Scholar
  4. Boldero, J. M., Bell, R. C., & Et Moore, S. M. (2010). Do gambling activity patterns predict gambling problem? A latent class analysis of gambling forms among Australian youth. International Gambling Studies, 10(2), 151–163.CrossRefGoogle Scholar
  5. Bourque, P., & Beaudette, D. (1982). Étude psychométrique du questionnaire de dépression de Beck auprès d’un échantillon d’étudiants universitaires francophones. Canadian Journal of Behavioural Science/Revue Canadienne des Sciences du Comportement,. doi:10.1037/h0081254.Google Scholar
  6. Chevalier, S., & Pastinelli, M. (2008). L’offre de jeu de poker sous toutes ses coutures ou la sociologie du poker. (Rapport de recherche). Québec, Canada: 76e congrès de l’ACFAS.Google Scholar
  7. Cunningham-Williams, R. M., & Hong, S. I. (2007). A latent class analysis (LCA) of problem gambling among a sample of community-recruited gamblers. The Journal of Nervous and Mental Disease, 195(11), 939–947.CrossRefPubMedGoogle Scholar
  8. Dufour, M., Petit, S., & Brunelle, N. (2012). La perception du poker selon les joueurs adeptes: Un jeu qui les distingue. Revue Criminologie, 45(2), 7–26.CrossRefGoogle Scholar
  9. European Council. (2012). Towards a comprehensive European framework for online gambling (Communication from the commission to the European parliament, the council, the economic and social committee and the committee of the regions). Strasbourg: European Commission.Google Scholar
  10. Eysenck, S. B., & Eysenck, H. J. (1977). The place of impulsiveness in a dimensional system of personality description. British Journal of Social & Clinical Psychology,. doi:10.1111/j.2044-8260.1977.tb01003.x.Google Scholar
  11. Ferris, J., & Wynne, H. (2001). L’indice canadien de jeu excessif. (Rapport de recherche). Ontario: Centre canadien de lutte contre l’alcoolisme et les toxicomanies.Google Scholar
  12. Freeston, M. H., Ladouceur, R., Thibodeau, N., Gagnon, F., & Rhéaume, J. (1994). L’inventaire d’anxiété de Beck: Propriétés psychométriques d’une traduction française. L’Encéphale, 20, 47–55.PubMedGoogle Scholar
  13. Goodriaan, A. E., Slutske, W. S., Krull, J. L., & Sjer, K. J. (2009). Longitudinal patterns of gambling activities and associated risk factors in college students. Addiction, 104, 1219–1232.CrossRefGoogle Scholar
  14. Griffiths, M., Parke, A., Wood, R., & Parke, J. (2006). Internet gambling: An overview of psychosocial impacts. UNLV Gaming Research & Review Journal, 10(1), 27–39.Google Scholar
  15. Griffiths, M., Parke, J., Wood, R., & Rigbye, J. (2010). Online poker gambling in university students: Further findings from an online survey. International Journal of Mental Health and Addiction,. doi:10.1007/s11469-009-9203-7.Google Scholar
  16. Hopley, A. A. B., Dempsey, K., & Nicki, R. (2011). Texas Hold’em online poker: A further examination. International Journal of Mental Health and Addiction,. doi:10.1007/s11469-011-9353-2.Google Scholar
  17. Hopley, A. A. B., & Nicki, R. M. (2010). Predictive factors of excessive online poker playing. Cyberpsychology, Behavior, and Social Networking,. doi:10.1089/cyber.2009.0223.Google Scholar
  18. Jacques, C., Ferland, F., Giroux, I., Bouchard, C. (1997). Traduction et validation du Questionnaire d’Eysenck. Dans, Ladouceur, R. Boutin, C., Doucet, C., Lachance, S. et Sylvain, C. (2000). Programme d’évaluation et de traitement des joueurs excessifs. Centre pour la prevention et le traitement du jeu, Université Laval.Google Scholar
  19. Jonsson, J. (2009). Responsible gaming and gambling problems among 3000 Swedish Internet poker players (Présentation au congrès de l’Alberta Gaming Research Institute). Alberta, Canada: Banff conference on Internet Gambling.Google Scholar
  20. Joukhador, J., Blaszczynski, A., & Maccallum, F. (2004). Superstitious beliefs in gambling among problem and non-problem gamblers: Preliminary data. Journal of Gambling Studies,. doi:10.1023/B:JOGS.0000022308.27774.2b.PubMedGoogle Scholar
  21. Kairouz, S., Nadeau, L., & Paradis, C. (2010). Portrait du jeu au Québec: Prévalence, incidence et trajectoires sur quatre ans (Rapport de recherche de l’Enquête ENHJEU). Québec, Canada: Université de Concordia.Google Scholar
  22. Khazaal, Y., Chatton, A., Bouvard, A., Khiari, H., Achab, S., & Zullino, D. (2013). Internet poker websites and pathological gambling prevention policy. Journal of Gambling Studies, 29(1), 51–59.CrossRefPubMedGoogle Scholar
  23. Ladouceur, R., Jacques, C., Giroux, I., & Sévigny, S. (2004). Inventaire des croyances liées au jeu (ICROL-J). Québec: Centre québécois d’excellence pour la prévention et le traitement du jeu, École de psychologie, Université Laval.Google Scholar
  24. LaPlante, D. A., Kleschinsky, J. H., LaBrie, R. A., Nelson, S. E., & Shaffer, H. J. (2009). Sitting at the virtual poker table: A prospective epidemiological study of actual Internet poker gambling behavior. Computers in Human Behavior,. doi:10.1016/j.chb.2008.12.027.Google Scholar
  25. Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. Boston: Houghton Mifflin.Google Scholar
  26. Liley, J., & Rakow, T. (2010). Probability estimation in poker: A qualified success for unaided judgment. Journal of Behavioral Decision Making,. doi:10.1002/bdm.670.Google Scholar
  27. Lloyd, J., Doll, H., Hawton, K., Dutton, W. H., Geddes, J. R., Goodwin, G. M., et al. (2010). Internet gamblers: A latent class analysis of their behaviours and health experiences. Journal of Gambling Studies,. doi:10.1007/s10899-010-9188-y.PubMedGoogle Scholar
  28. Magidson, J., & Vermunt, J. (2002). Latent class models for clustering: A comparison with K-means. Canadian Journal of Marketing Research, 20, 36–43.Google Scholar
  29. McCormack, A., & Griffiths, M. D. (2012). What differentiates professional poker players from recreational poker players? A qualitative interview study. International Journal of Mental Health and Addiction,. doi:10.1007/s11469-011-9312-y.Google Scholar
  30. Mitrovic, D. V., & Brown, J. (2009). Poker mania and problem gambling: A study of distorted cognitions, motivation and alexithymia. Journal of Gambling Studies,. doi:10.1007/s10899-009-9140-1.PubMedGoogle Scholar
  31. Muthén, L. K., & Muthén, B. O. (2010). Mplus User’s guide (6th ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
  32. National Center for Responsible Gambling. (2006). 2006 Annual Report (Research report). Washington, DC: Author.Google Scholar
  33. Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling,. doi:10.1080/10705510701575396.Google Scholar
  34. Radburn, B., & Horsley, R. (2011). Gamblers, grinders, and mavericks: The use of membership categorisation to manage identity by professional poker players. Journal of Gambling Issues,. doi:10.4309/jgi.2011.26.4.Google Scholar
  35. Responsible Gambling Council. (2006). One-in-five Ontarians play poker for money (Research report). Ontario: Author.Google Scholar
  36. Shead, N. W., Hodgins, D. C., & Scharf, D. (2008). Differences between poker players and non-poker-playing gamblers. International Gambling Studies,. doi:10.1080/14459790802139991.Google Scholar
  37. Siler, K. (2010). Social and psychological challenges of poker. Journal of Gambling Studies,. doi:10.1007/s10899-009-9168-2.PubMedGoogle Scholar
  38. Tremblay, J., Rouillard, P., April, N., & Sirois, M. (2001). Dépistage/Évaluation du besoin d’aidealcool (DÉBA-alcool) v1. 6p. Québec, Canada: CRT-ALTO et Régie Régionale de la Santé et des Services Sociaux du Québec.Google Scholar
  39. Vermunt, J. K., & Magidson, J. (2007). Latent class analysis with sampling weights: A maximum likelihood approach. Sociological Methods and Research, 36(1), 87–111.CrossRefGoogle Scholar
  40. Wiebe, J., Mun, P., & Kauffman, P. (2006). Gambling and problem gambling in Ontario 2005 (Research report). Ontario: Responsible Gambling Council.Google Scholar
  41. Wohl, M. J. A., Young, M. M., & Hart, K. E. (2007). Self-perceptions of dispositional luck: Relationship to DSM gambling symptoms, subjective enjoyment of gambling and treatment readiness. Substance Use and Misuse,. doi:10.1080/10826080601094223.PubMedGoogle Scholar
  42. Wood, R. T. A., Griffiths, M. D., & Parke, J. (2007). Acquisition, development, and maintenance of online poker playing in a student sample. Cyber Psychology & Behavior,. doi:10.1089/cpb.2006.9944.Google Scholar
  43. Wood, R. T., & Williams, R. J. (2009). Internet gambling: Prevalence, patterns, problems and policy options (Research report). Ontario: Ontario Problem Gambling Research Center.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Faculty of Medicine (Addiction Program)Université de Sherbrooke (Campus Longueuil)LongueuilCanada
  2. 2.Department of Special EducationUniversité du Québec à Trois-RivièresTrois-RivièresCanada

Personalised recommendations