Journal of Gambling Studies

, Volume 31, Issue 1, pp 73–89 | Cite as

Delusions of Expertise: The High Standard of Proof Needed to Demonstrate Skills at Horserace Handicapping

  • Matthew Browne
  • Matthew J. Rockloff
  • Alex Blaszcynski
  • Clive Allcock
  • Allen Windross
Original Paper


Gamblers who participate in skill-oriented games (such as poker and sports-betting) are motivated to win over the long-term, and some monitor their betting outcomes to evaluate their performance and proficiency. In this study of Australian off-track horserace betting, we investigated which levels of sustained returns would be required to establish evidence of skill/expertise. We modelled a random strategy to simulate ‘naïve’ play, in which equal bets were placed on randomly selected horses using a representative sample of 211 weekend races. Results from a Monte Carlo simulation yielded a distribution of return-on-investments for varying number of bets (N), showing surprising volatility, even after a large number of repeated bets. After adjusting for the house advantage, a gambler would have to place over 10,000 bets in individual races with net returns exceeding 9 % to be reasonably considered an expert punter (α = .05). Moreover, a record of fewer bets would require even greater returns for demonstrating expertise. As such, validated expertise is likely to be rare among race bettors. We argue that the counter-intuitively high threshold for demonstrating expertise by tracking historical performance is likely to exacerbate known cognitive biases in self-evaluation of expertise.


Horse racing Expertise Monte Carlo simulation Self-assessment Statistics Performance-monitoring 


  1. Blaszczynski, A., & Nower, L. (2002). A pathways model of problem and pathological gambling. Addiction, 97(5), 487–499. doi: 10.1046/j.1360-0443.2002.00015.x.CrossRefPubMedGoogle Scholar
  2. Brownstein, A. L., Read, S. J., & Simon, D. (2004). Bias at the racetrack: Effects of individual expertise and task importance on predecision reevaluation of alternatives. Personality and Social Psychology Bulletin, 30(7), 891–904. doi: 10.1177/0146167204264083.CrossRefPubMedGoogle Scholar
  3. Chantal, Y., & Vallerand, R. J. (1996). Skill versus luck: A motivational analysis of gambling involvement. Journal of Gambling Studies, 12(4), 407–418. doi: 10.1007/BF01539185.CrossRefPubMedGoogle Scholar
  4. Dixon, M. J., Fugelsang, J. A., MacLaren, V. V., & Harrigan, K. A. (2013). Gamblers can discriminate “tight” from “loose” electronic gambling machines. International Gambling Studies, 13(1), 98–111. doi: 10.1080/14459795.2012.712151.CrossRefGoogle Scholar
  5. Ehrlinger, J., & Dunning, D. (2003). How chronic self-views influence (and potentially mislead) estimates of performance. Journal of Personality and Social Psychology, 84(1), 5–17.CrossRefPubMedGoogle Scholar
  6. Emond, M. S., & Marmurek, H. H. C. (2010). Gambling related cognitions mediate the association between thinking style and problem gambling severity. Journal of Gambling Studies, 26(2), 257–267. doi: 10.1007/s10899-009-9164-6.CrossRefPubMedGoogle Scholar
  7. Epstein, R. A. (2012). The theory of gambling and statistical logic. Waltham, MA: Academic Press.Google Scholar
  8. Garrett, T. A., & Sobel, R. S. (1999). Gamblers favor skewness, not risk: Further evidence from United States’ lottery games. Economics Letters, 63(1), 85–90. doi: 10.1016/S0165-1765(99)00012-9.CrossRefGoogle Scholar
  9. Harper, J. D., & Ross, K. A. (2005). Stopping strategies and gambler’s ruin. Mathematics Magazine, 78(4), 255–268. doi: 10.2307/30044172.CrossRefGoogle Scholar
  10. Klenke, A. (2008). Probability theory: A comprehensive course. New York: Springer.CrossRefGoogle Scholar
  11. Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing one’s own incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77(6), 1121–1134.CrossRefPubMedGoogle Scholar
  12. May, P. (2013). In search of the winning system. Compton: Racing Post & Raceform.Google Scholar
  13. McMullan, J. L., & Kervin, M. (2012). Selling internet gambling: Advertising, new media and the content of poker promotion. International Journal of Mental Health and Addiction, 10(5), 622–645. doi: 10.1007/s11469-011-9336-3.CrossRefGoogle Scholar
  14. Meadow, W., & Sunstein, C. R. (2001). Statistics, not experts. Duke Law Journal, 51(2), 629. doi: 10.2307/1373203.CrossRefPubMedGoogle Scholar
  15. Metcalfe, J. (1998). Cognitive optimism: Self-deception or memory-based processing heuristics? Personality and Social Psychology Review, 2(2), 100–110. doi: 10.1207/s15327957pspr0202_3.CrossRefPubMedGoogle Scholar
  16. Meyer, G., Meduna, M. von, Brosowski, T., & Hayer, T. Is poker a game of skill or chance? A quasi-experimental study. Journal of Gambling Studies, 1–16. doi: 10.1007/s10899-012-9327-8.
  17. Mitrovic, D. V., & Brown, J. (2009). Poker mania and problem gambling: A study of distorted cognitions, motivation and alexithymia. Journal of gambling studies/co-sponsored by the National Council on Problem Gambling and Institute for the Study of Gambling and Commercial Gaming, 25(4), 489–502. doi: 10.1007/s10899-009-9140-1.Google Scholar
  18. Mun, J. (2006). Modeling risk: Applying Monte Carlo simulation, real options analysis, forecasting, and optimization techniques. Hoboken, NJ: Wiley.Google Scholar
  19. Neighbors, C., Lostutter, T. W., Cronce, J. M., & Larimer, M. E. (2002). Exploring college student gambling motivation. Journal of Gambling Studies, 18(4), 361–370. doi: 10.1023/A:1021065116500.CrossRefPubMedCentralPubMedGoogle Scholar
  20. Pelletier, M., & Ladouceur, R. (2007). The effect of knowledge of mathematics on gambling behaviours and erroneous perceptions. International Journal of Psychology, 42(2), 134–140. doi: 10.1080/00207590600788047.CrossRefGoogle Scholar
  21. Pitt, M. K., Silva, R. S., Giordani, P., & Kohn, R. (2012). On some properties of Markov chain Monte Carlo simulation methods based on the particle filter. Journal of Econometrics, 171(2), 134–151. doi: 10.1016/j.jeconom.2012.06.004.CrossRefGoogle Scholar
  22. Richard, D. C. S., Blaszczynski, A., & Nower, L. (2013). The Wiley-Blackwell handbook of disordered gambling. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  23. Schmidt, I. W., Berg, I. J., & Deelman, B. G. (1999). Illusory superiority in self-reported memory of older adults. Aging, Neuropsychology, and Cognition, 6(4), 288–301. doi: 10.1076/1382-5585(199912)06:04;1-B;FT288.CrossRefGoogle Scholar
  24. Smith, M. A., & Vaughan Williams, L. (2010). Forecasting horse race outcomes: New evidence on odds bias in UK betting markets. International Journal of Forecasting, 26(3), 543–550. doi: 10.1016/j.ijforecast.2009.12.014.CrossRefGoogle Scholar
  25. Team, R. D. C. (2011). R: A language and environment for statistical computing. Vienna, Austria. Retrieved from
  26. Toneatto, T., Blitz-Miller, T., Calderwood, K., Dragonetti, R., & Tsanos, A. (1997). Cognitive distortions in heavy gambling. Journal of Gambling Studies, 13(3), 253–266. doi: 10.1023/A:1024983300428.CrossRefPubMedGoogle Scholar
  27. Turner, N. (2013). Probability, random events and the mathematics of gambling. Problem Gambling Institute of Ontario. Retrieved from
  28. Tversky, A., & Kahneman, D. (1975). Judgment under uncertainty: Heuristics and biases. In D. Wendt & C. Vlek (Eds.), Utility, probability, and human decision making (pp. 141–162). Netherlands: Springer. Retrieved from
  29. Waylen, A. E., Horswill, M. S., Alexander, J. L., & McKenna, F. P. (2004). Do expert drivers have a reduced illusion of superiority? Transportation Research Part F: Traffic Psychology and Behaviour, 7(4–5), 323–331. doi: 10.1016/j.trf.2004.09.009.CrossRefGoogle Scholar
  30. Williams, R. J., & Connolly, D. (2006). Does learning about the mathematics of gambling change gambling behavior? Psychology of Addictive Behaviors, 20(1), 62–68. doi: 10.1037/0893-164X.20.1.62.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Matthew Browne
    • 1
  • Matthew J. Rockloff
    • 1
  • Alex Blaszcynski
    • 2
  • Clive Allcock
    • 2
  • Allen Windross
    • 3
  1. 1.Institute for Health and Social Science ResearchCQUniversityBranyanAustralia
  2. 2.School of PsychologyUniversity of SydneySydneyAustralia
  3. 3.Balmoral Consultancy ServicesSydney, ThornleighAustralia

Personalised recommendations