# Delusions of Expertise: The High Standard of Proof Needed to Demonstrate Skills at Horserace Handicapping

- 313 Downloads
- 4 Citations

## Abstract

Gamblers who participate in skill-oriented games (such as poker and sports-betting) are motivated to win over the long-term, and some monitor their betting outcomes to evaluate their performance and proficiency. In this study of Australian off-track horserace betting, we investigated which levels of sustained returns would be required to establish evidence of skill/expertise. We modelled a random strategy to simulate ‘naïve’ play, in which equal bets were placed on randomly selected horses using a representative sample of 211 weekend races. Results from a Monte Carlo simulation yielded a distribution of return-on-investments for varying number of bets (N), showing surprising volatility, even after a large number of repeated bets. After adjusting for the house advantage, a gambler would have to place over 10,000 bets in individual races with net returns exceeding 9 % to be reasonably considered an expert punter (α = .05). Moreover, a record of fewer bets would require even greater returns for demonstrating expertise. As such, validated expertise is likely to be rare among race bettors. We argue that the counter-intuitively high threshold for demonstrating expertise by tracking historical performance is likely to exacerbate known cognitive biases in self-evaluation of expertise.

## Keywords

Horse racing Expertise Monte Carlo simulation Self-assessment Statistics Performance-monitoring## References

- Blaszczynski, A., & Nower, L. (2002). A pathways model of problem and pathological gambling.
*Addiction,**97*(5), 487–499. doi: 10.1046/j.1360-0443.2002.00015.x.CrossRefPubMedGoogle Scholar - Brownstein, A. L., Read, S. J., & Simon, D. (2004). Bias at the racetrack: Effects of individual expertise and task importance on predecision reevaluation of alternatives.
*Personality and Social Psychology Bulletin,**30*(7), 891–904. doi: 10.1177/0146167204264083.CrossRefPubMedGoogle Scholar - Chantal, Y., & Vallerand, R. J. (1996). Skill versus luck: A motivational analysis of gambling involvement.
*Journal of Gambling Studies,**12*(4), 407–418. doi: 10.1007/BF01539185.CrossRefPubMedGoogle Scholar - Dixon, M. J., Fugelsang, J. A., MacLaren, V. V., & Harrigan, K. A. (2013). Gamblers can discriminate “tight” from “loose” electronic gambling machines.
*International Gambling Studies,**13*(1), 98–111. doi: 10.1080/14459795.2012.712151.CrossRefGoogle Scholar - Ehrlinger, J., & Dunning, D. (2003). How chronic self-views influence (and potentially mislead) estimates of performance.
*Journal of Personality and Social Psychology,**84*(1), 5–17.CrossRefPubMedGoogle Scholar - Emond, M. S., & Marmurek, H. H. C. (2010). Gambling related cognitions mediate the association between thinking style and problem gambling severity.
*Journal of Gambling Studies,**26*(2), 257–267. doi: 10.1007/s10899-009-9164-6.CrossRefPubMedGoogle Scholar - Epstein, R. A. (2012).
*The theory of gambling and statistical logic*. Waltham, MA: Academic Press.Google Scholar - Garrett, T. A., & Sobel, R. S. (1999). Gamblers favor skewness, not risk: Further evidence from United States’ lottery games.
*Economics Letters,**63*(1), 85–90. doi: 10.1016/S0165-1765(99)00012-9.CrossRefGoogle Scholar - Harper, J. D., & Ross, K. A. (2005). Stopping strategies and gambler’s ruin.
*Mathematics Magazine,**78*(4), 255–268. doi: 10.2307/30044172.CrossRefGoogle Scholar - Klenke, A. (2008).
*Probability theory: A comprehensive course*. New York: Springer.CrossRefGoogle Scholar - Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing one’s own incompetence lead to inflated self-assessments.
*Journal of Personality and Social Psychology,**77*(6), 1121–1134.CrossRefPubMedGoogle Scholar - May, P. (2013).
*In search of the winning system*. Compton: Racing Post & Raceform.Google Scholar - McMullan, J. L., & Kervin, M. (2012). Selling internet gambling: Advertising, new media and the content of poker promotion.
*International Journal of Mental Health and Addiction,**10*(5), 622–645. doi: 10.1007/s11469-011-9336-3.CrossRefGoogle Scholar - Meadow, W., & Sunstein, C. R. (2001). Statistics, not experts.
*Duke Law Journal,**51*(2), 629. doi: 10.2307/1373203.CrossRefPubMedGoogle Scholar - Metcalfe, J. (1998). Cognitive optimism: Self-deception or memory-based processing heuristics?
*Personality and Social Psychology Review,**2*(2), 100–110. doi: 10.1207/s15327957pspr0202_3.CrossRefPubMedGoogle Scholar - Meyer, G., Meduna, M. von, Brosowski, T., & Hayer, T. Is poker a game of skill or chance? A quasi-experimental study.
*Journal of Gambling Studies*, 1–16. doi: 10.1007/s10899-012-9327-8. - Mitrovic, D. V., & Brown, J. (2009). Poker mania and problem gambling: A study of distorted cognitions, motivation and alexithymia.
*Journal of gambling studies/co-sponsored by the National Council on Problem Gambling and Institute for the Study of Gambling and Commercial Gaming,**25*(4), 489–502. doi: 10.1007/s10899-009-9140-1.Google Scholar - Mun, J. (2006).
*Modeling risk: Applying Monte Carlo simulation, real options analysis, forecasting, and optimization techniques*. Hoboken, NJ: Wiley.Google Scholar - Neighbors, C., Lostutter, T. W., Cronce, J. M., & Larimer, M. E. (2002). Exploring college student gambling motivation.
*Journal of Gambling Studies,**18*(4), 361–370. doi: 10.1023/A:1021065116500.CrossRefPubMedCentralPubMedGoogle Scholar - Pelletier, M., & Ladouceur, R. (2007). The effect of knowledge of mathematics on gambling behaviours and erroneous perceptions.
*International Journal of Psychology,**42*(2), 134–140. doi: 10.1080/00207590600788047.CrossRefGoogle Scholar - Pitt, M. K., Silva, R. S., Giordani, P., & Kohn, R. (2012). On some properties of Markov chain Monte Carlo simulation methods based on the particle filter.
*Journal of Econometrics,**171*(2), 134–151. doi: 10.1016/j.jeconom.2012.06.004.CrossRefGoogle Scholar - Richard, D. C. S., Blaszczynski, A., & Nower, L. (2013).
*The Wiley-Blackwell handbook of disordered gambling*. Hoboken, NJ: Wiley.CrossRefGoogle Scholar - Schmidt, I. W., Berg, I. J., & Deelman, B. G. (1999). Illusory superiority in self-reported memory of older adults.
*Aging, Neuropsychology, and Cognition,**6*(4), 288–301. doi: 10.1076/1382-5585(199912)06:04;1-B;FT288.CrossRefGoogle Scholar - Smith, M. A., & Vaughan Williams, L. (2010). Forecasting horse race outcomes: New evidence on odds bias in UK betting markets.
*International Journal of Forecasting,**26*(3), 543–550. doi: 10.1016/j.ijforecast.2009.12.014.CrossRefGoogle Scholar - Team, R. D. C. (2011).
*R: A language and environment for statistical computing*. Vienna, Austria. Retrieved from http://www.R-project.org/. - Toneatto, T., Blitz-Miller, T., Calderwood, K., Dragonetti, R., & Tsanos, A. (1997). Cognitive distortions in heavy gambling.
*Journal of Gambling Studies,**13*(3), 253–266. doi: 10.1023/A:1024983300428.CrossRefPubMedGoogle Scholar - Turner, N. (2013).
*Probability, random events and the mathematics of gambling*. Problem Gambling Institute of Ontario. Retrieved from http://www.problemgambling.ca. - Tversky, A., & Kahneman, D. (1975). Judgment under uncertainty: Heuristics and biases. In D. Wendt & C. Vlek (Eds.),
*Utility, probability, and human decision making*(pp. 141–162). Netherlands: Springer. Retrieved from http://link.springer.com/chapter/10.1007/978-94-010-1834-0_8. - Waylen, A. E., Horswill, M. S., Alexander, J. L., & McKenna, F. P. (2004). Do expert drivers have a reduced illusion of superiority?
*Transportation Research Part F: Traffic Psychology and Behaviour,**7*(4–5), 323–331. doi: 10.1016/j.trf.2004.09.009.CrossRefGoogle Scholar - Williams, R. J., & Connolly, D. (2006). Does learning about the mathematics of gambling change gambling behavior?
*Psychology of Addictive Behaviors,**20*(1), 62–68. doi: 10.1037/0893-164X.20.1.62.CrossRefPubMedGoogle Scholar