Advertisement

Journal of Gambling Studies

, Volume 29, Issue 1, pp 119–129 | Cite as

Impaired Self-Awareness in Pathological Gamblers

  • Damien Brevers
  • Axel Cleeremans
  • Antoine Bechara
  • Max Greisen
  • Charles Kornreich
  • Paul Verbanck
  • Xavier Noël
Original Paper

Abstract

Lack of self-awareness of one’s decisions remains an understudied and elusive topic in the addiction literature. The present study aimed at taking a first step towards addressing this difficult subject through the use of a combination of behavioral procedures. Here, we explored the association between a metacognitive process (the ability to reflect and evaluate the awareness of one’s own decision) and poor performance on the Iowa Gambling Task (IGT) in a group of pathological gamblers (PG; n = 30), and in a comparison group (n = 35). This metacognitive process was assessed during the IGT with the post-decision wagering procedure, while a number of potential confounds (i.e., reward/loss sensitivity, dual-tasking) were controlled for. Results showed that: (1) Initial performance enhancement of the control group on IGT occurred without explicit knowledge of the task, thus confirming its implicit character; (2) compared to controls, performance of PG on the IGT failed to increase during the task; (3) taking into account increased reward sensitivity and decreased loss sensitivity as well as poorer dual-tasking in pathological gamblers, PG tended to exhibit a bias in evaluating their own performance on the IGT by maximizing their wagers independently of selecting advantageous decks. Our findings suggest that biased metacognition may affect pathological gamblers, leading to disadvantageous post-decision wagering, which is in turn linked to impaired decision making under ambiguity. Perhaps this deficit reflects the impaired insight and self-awareness that many addicts suffer from, thus providing a novel approach for capturing and measuring this impairment, and for investigating its possible causes.

Keywords

Pathological gambling Decision-making Uncertainty Insight 

References

  1. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Press.Google Scholar
  2. Bechara, A. (2003). Risky business: Emotion, decision-making, and addiction. Journal of Gambling Studies, 19, 23–51.PubMedCrossRefGoogle Scholar
  3. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.PubMedCrossRefGoogle Scholar
  4. Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 561–571.PubMedCrossRefGoogle Scholar
  5. Breen, R. B., & Frank, M. L. (1993). The effects of statistical fluctuations and perceived status of a competitor on the illusion of control in experienced gamblers. Journal of Gambling Studies, 9, 265–276.CrossRefGoogle Scholar
  6. Bubier, J. L., & Drabick, D. A. G. (2008). Affective decision-making and externalizing behaviors: The role of autonomic activity. Journal of Abnormal Child Psychology, 36, 941–953.PubMedCrossRefGoogle Scholar
  7. Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS Scales. Journal of Personality Social Psychology, 67, 319–333.CrossRefGoogle Scholar
  8. Cassotti, M., & Moutier, S. (2010). How to explain receptivity to conjunction-fallacy inhibition training: Evidence from the Iowa Gambling Task. Brain Cognition, 72, 378–384.CrossRefGoogle Scholar
  9. Cavedini, P., Riboldi, G., Keller, R., D’Annucci, A., & Bellodi, L. (2002). Frontal lobe dysfunction in pathological gambling patients. Biological Psychiatry, 51, 334–341.PubMedCrossRefGoogle Scholar
  10. Cella, M., Dymond, S., & Cooper, A. (2010). Impaired flexible decision-making in major depressive disorder. Journal of Affective Disorders, 124, 207–210.PubMedCrossRefGoogle Scholar
  11. Cleeremans, A., Timmermans, B., & Pasquali, A. (2007). Consciousness and metarepresentation: A computational sketch. Neural Networks, 20, 1032–1039.PubMedCrossRefGoogle Scholar
  12. Conway, A. R., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonom Bulletin Review, 12, 769–786.CrossRefGoogle Scholar
  13. Dunn, B. D., Dalgleish, T., & Lawrence, A. D. (2006). The somatic marker hypothesis: A critical evaluation. Neuroscience and Biobehavioral Reviews, 30, 239–271.PubMedCrossRefGoogle Scholar
  14. Engle, R. W., Cantor, J., & Carullo, J. J. (1992). Individual differences in working memory and comprehension: A test of four hypotheses. Journal of Experimental Psychology. Learning, Memory, and Cognition, 18, 972–992.PubMedCrossRefGoogle Scholar
  15. Fellows, L. K., & Farah, M. J. (2005a). Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15, 58–63.PubMedCrossRefGoogle Scholar
  16. Fellows, L. K., & Farah, M. J. (2005b). Dissociable elements of human foresight: A role for the ventromedial frontal lobes in framing the future, but not in discounting future rewards. Neuropsychologia, 43, 1214–1221.PubMedCrossRefGoogle Scholar
  17. First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. W. (2002). Structured clinical interview for DSM-IV-TR axis i disorders, research version, non-patient edition. (SCID-I/NP). New York: Biometrics Research, New York State Psychiatric Institute.Google Scholar
  18. Fleming, S. M., & Dolan, R. J. (2010). Effects of loss aversion on post-decision wagering: Implications for measures of awareness. Consciousness and Cognition, 19, 352–363.PubMedCrossRefGoogle Scholar
  19. Fleming, S. M., Weil, R. S., Nagy, Z., Dolan, R. J., & Rees, G. (2010). Relating introspective accuracy to individual differences in brain structure. Science, 329, 1541–1543.PubMedCrossRefGoogle Scholar
  20. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-Mental State”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatry Research, 12, 189–198.CrossRefGoogle Scholar
  21. Goldstein, R. Z., Craig, A. D., Bechara, A., Garavan, H., Childress, A. R., Paulus, M. P., et al. (2008). The neurocircuitry of impaired insight in drug addiction. Trends in Cognitive Science, 13, 372–380.CrossRefGoogle Scholar
  22. Goodie, A. S. (2005). The role of perceived control and overconfidence in pathological gambling. Journal of Gambling Studies, 21, 481–502.PubMedCrossRefGoogle Scholar
  23. Goudriaan, A. E., Oosterlaan, J., de Beurs, E., & van den Brink, W. (2004). Pathological gambling: A comprehensive review of biobehavioral findings. Neuroscience Biobehavioral Review, 28, 123–141.CrossRefGoogle Scholar
  24. Goudriaan, A. E., Oosterlaan, J., de Beurs, E., & van den Brink, W. (2005). Decision making in pathological gambling: A comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Cognitive Brain Research, 23, 137–151.PubMedCrossRefGoogle Scholar
  25. Goudriaan, A. E., Oosterlaan, J., de Beurs, E., & van den Brink, W. (2006). Psychophysiological determinants and concomitants of deficient decision making in pathological gamblers. Drug and Alcohol Dependence, 84, 231–239.PubMedCrossRefGoogle Scholar
  26. Grant, J. E., & Potenza, M. N. (2005). Pathological gambling and other “behavioral” addictions. In R. J. Frances, S. I. Miller, & A. H. Mack (Eds.), Clinical textbook of addictive disorders (3rd ed., pp. 303–320). New York, NY: Guilford Publications.Google Scholar
  27. Groth-Marnat, G. (1997). Handbook of psychological assessment (3rd ed.). New York, NY: Wiley.Google Scholar
  28. Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. New York, NY: Cambridge University Press.Google Scholar
  29. Kerber, C. S., Black, D. W., & Buckwalter, K. (2008). Comorbid psychiatric disorders among older adult recovering pathological gamblers. Issues in Mental Health Nursing, 29, 1018–1028.PubMedCrossRefGoogle Scholar
  30. Kessler, R. C., Adler, L., Ames, M., Delmer, O., Faraone, S., Hiripi, E., et al. (2005). The World Health Organization Adult ADHD Self-Report Scale (ASRS): A short screening scale for use in the general population. Psychological Medicine, 35, 245–256.PubMedCrossRefGoogle Scholar
  31. Lakey, C. E., Goodie, A. S., & Campbell, W. K. (2007). Frequent card playing and pathological gambling: The utility of the Georgia gambling task and Iowa Gambling Task for predicting pathology. Journal of Gambling Studies, 23, 285–297.PubMedCrossRefGoogle Scholar
  32. Langer, E. J. (1975). The illusion of control. Journal of Personality and Social Psychology, 32, 311–332.CrossRefGoogle Scholar
  33. Lesieur, H. R., & Blume, S. B. (1987). The South Oaks Gambling Screen (SOGS): A new instrument for the identification of pathological gamblers. American Journal of Psychiatry, 144, 1184–1188.PubMedGoogle Scholar
  34. Mueller, E. M., Nguyen, J., Ray, W. J., & Borkovec, T. D. (2010). Future-oriented decision-making in generalized anxiety disorder is evident across different versions of the Iowa Gambling Task. Journal of Behavior Therapy and Experimental Psychiatry, 41, 165–171.PubMedCrossRefGoogle Scholar
  35. Myrseth, H., Brunborg, G. S., & Eidem, M. (2010). Differences in cognitive distortions between pathological and non-pathological gamblers with preferences for chance or skill games. Journal of Gambling Studies, 26, 561–569.PubMedCrossRefGoogle Scholar
  36. Pasquali, A., Timmermans, B., & Cleeremans, A. (2010). Know thyself: Metacognitive networks and measures of consciousness. Cognition, 17, 182–190.CrossRefGoogle Scholar
  37. Persaud, N., McLeod, P., & Cowey, A. (2007). Post-decision wagering objectively measures awareness. Nature Neuroscience, 10, 257–261.PubMedCrossRefGoogle Scholar
  38. Petry, N. M. (2001). Pathological gamblers, with and without substance use disorders, discount delayed rewards at high rates. Journal of Abnormal Psychology, 110, 482–487.PubMedCrossRefGoogle Scholar
  39. Roca, M., Torralva, T., López, P., Cetkovich, M., Clark, L., & Manes, F. (2008). Executive functions in pathologic gamblers selected in an ecologic setting. Cognitive and Behavioral Neurology, 21, 1–4.PubMedCrossRefGoogle Scholar
  40. Schurger, A., & Sher, S. (2008). Awareness, loss aversion, and post-decision wagering. Trends in Cognitive Science, 12, 209–210.CrossRefGoogle Scholar
  41. Spielberger, C. (1983). Manual for the state-trait anxiety inventory: STAI (Eorm I). Palo Alto, CA: Consulting Psychologists Press.Google Scholar
  42. Strong, D. R., Breen, R. B., Lesieur, H. R., & Lejuez, C. W. (2003). Using the rasch model to evaluate the South Oaks Gambling Screen for use with non pathological gamblers. Addictive Behaviors, 28, 1465–1472.PubMedCrossRefGoogle Scholar
  43. Toneatto, T. (1999). Cognitive psychopathology of problem gambling. Substance Use and Misuse, 34, 1593–1604.PubMedCrossRefGoogle Scholar
  44. Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28, 127–154.CrossRefGoogle Scholar
  45. van Holst, R. J., van den Brink, W., Veltman, D. J., & Goudriaan, A. E. (2010). Why gamblers fail to win: A review of cognitive and neuroimaging findings in pathological gambling. Neuroscience Biobehavioral Review, 34, 87–107.CrossRefGoogle Scholar
  46. Wechsler, D. (2000). WAIS-III. Échelle d’intelligence de Wechsler pour adultes, Troisième édition. Paris: ECPA.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Damien Brevers
    • 1
  • Axel Cleeremans
    • 1
  • Antoine Bechara
    • 2
    • 3
  • Max Greisen
    • 1
  • Charles Kornreich
    • 1
  • Paul Verbanck
    • 1
  • Xavier Noël
    • 1
  1. 1.Psychological Medicine LaboratoryUniversité Libre de BruxellesBrusselsBelgium
  2. 2.McGill UniversityMontrealCanada
  3. 3.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations