Journal of Gambling Studies

, Volume 28, Issue 3, pp 493–513 | Cite as

A Preliminary Study of the Neural Correlates of the Intensities of Self-Reported Gambling Urges and Emotions in Men with Pathological Gambling

  • Iris M. Balodis
  • Cheryl M. Lacadie
  • Marc N. Potenza
Original Paper


Although self-reported gambling urge intensities have clinical utility in the treatment of pathological gambling (PG), prior studies have not investigated their neural correlates. Functional magnetic resonance imaging (fMRI) was conducted while 10 men with PG and 11 control comparison (CON) men viewed videotaped scenarios of gambling, happy or sad content. Participants rated the intensity of their emotions and motivations and reported the qualities of their responses. Relative to the CON group, the PG group reported similar responses to sad and happy scenarios, but stronger emotional responses and gambling urges when viewing the gambling scenarios. Correlations between self-reported responses and brain activations were typically strongest during the period of reported onset of emotional/motivational response and more robust in PG than in CON subjects for all conditions. During this epoch, corresponding with conscious awareness of an emotional/motivational response, subjective ratings of gambling urges in the PG group were negatively correlated with medial prefrontal cortex activation and positively correlated with middle temporal gyrus and temporal pole activations. Sadness ratings in the PG group correlated positively with activation of the medial orbitofrontal cortex, middle temporal gyrus, and retrosplenial cortex, while self-reported happiness during the happy videos demonstrated largely inverse correlations with activations in the temporal poles. Brain areas identified in the PG subjects have been implicated in explicit, self-referential processing and episodic memory. The findings demonstrate different patterns of correlations between subjective measures of emotions and motivations in PG and CON subjects when viewing material of corresponding content, suggesting in PG alterations in the neural correlates underlying experiential aspects of affective processing.


Emotion fMRI Gambling urges Motivation Temporal pole 



The authors would like to thank Bruce Wexler and Todd Constable for their helpful feedback and suggestions. This research was supported by NIH grants R01 DA019039, RL1 AA017539, RL5 DA024858, the VA VISN1 MIRECC and REAP, UL1-DE19586 and the NIH Roadmap for Medical Research/Common Fund. This research was funded in part by a grant from the National Center for Responsible Gaming and its Institute for Research on Gambling Disorders.

Conflict of interest

All authors reported no conflict of interest in the content of this paper. Dr. Potenza has received financial support or compensation for the following: Dr. Potenza consults for and is an advisor to Boehringer Ingelheim; has financial interests in Somaxon; has received research support from the National Institutes of Health, Veteran’s Administration, Mohegan Sun Casino, the National Center for Responsible Gaming and its affiliated Institute for Research on Gambling Disorders, and Forest Laboratories pharmaceuticals; has participated in surveys, mailings or telephone consultations related to drug addiction, impulse control disorders or other health topics; has consulted for law offices on issues related to addictions or impulse control disorders; has provided clinical care in the Connecticut Department of Mental Health and Addiction Services Problem Gambling Services Program; has performed grant reviews for the National Institutes of Health and other agencies; has guest-edited journal sections; has given academic lectures in grand rounds, CME events and other clinical or scientific venues; and has generated books or book chapters for publishers of mental health texts.


  1. American Psychiatric Association. (2004). Diagnostic and statistical manual of mental disorders, 4th edition, Text Revision. Washington, D.C: American Psychiatric Press, Inc.Google Scholar
  2. Baxter, L. R., Jr., Schwartz, J. M., Bergman, K. S., Szuba, M. P., Guze, B. H., Mazziotta, J. C., et al. (1992). Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive disorder. Archives of General Psychiatry, 49(9), 681–689.PubMedCrossRefGoogle Scholar
  3. Bechara, A. (2003). Risky business: Emotion, decision-making, and addiction. Journal of Gambling Studies, 19(1), 23–51.PubMedCrossRefGoogle Scholar
  4. Bellebaum, C., & Daum, I. (2007). Cerebellar involvement in executive control. Cerebellum, 6(3), 184–192.PubMedCrossRefGoogle Scholar
  5. Beveridge, T. J., Gill, K. E., Hanlon, C. A., & Porrino, L. J. (2008). Review. Parallel studies of cocaine-related neural and cognitive impairment in humans and monkeys. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1507), 3257–3266.PubMedCrossRefGoogle Scholar
  6. Blumberg, H. P., Leung, H. C., Skudlarski, P., Lacadie, C. M., Fredericks, C. A., Harris, B. C., et al. (2003). A functional magnetic resonance imaging study of bipolar disorder: State- and trait-related dysfunction in ventral prefrontal cortices. Archives of General Psychiatry, 60(6), 601–609.PubMedCrossRefGoogle Scholar
  7. Breiter, H. C., & Rauch, S. L. (1996). Functional MRI and the study of OCD: From symptom provocation to cognitive-behavioral probes of cortico-striatal systems and the amygdala. Neuroimage, 4(3 Pt 3), S127–S138.Google Scholar
  8. Brewer, J. A., Worhunsky, P. D., Carroll, K. M., Rounsaville, B. J., & Potenza, M. N. (2008). Pretreatment brain activation during stroop task is associated with outcomes in cocaine-dependent patients. Biological Psychiatry, 64(11), 998–1004.PubMedCrossRefGoogle Scholar
  9. Brody, A. L., Mandelkern, M. A., Lee, G., Smith, E., Sadeghi, M., Saxena, S., et al. (2004). Attenuation of cue-induced cigarette craving and anterior cingulate cortex activation in bupropion-treated smokers: A preliminary study. Psychiatry Research, 130(3), 269–281.PubMedCrossRefGoogle Scholar
  10. Buchanan, T. W. (2007). Retrieval of emotional memories. Psychological Bulletin, 133(5), 761–779.PubMedCrossRefGoogle Scholar
  11. Castelli, F., Happe, F., Frith, U., & Frith, C. (2000). Movement and mind: A functional imaging study of perception and interpretation of complex intentional movement patterns. Neuroimage, 12(3), 314–325.PubMedCrossRefGoogle Scholar
  12. Chambers, R. A., Taylor, J. R., & Potenza, M. N. (2003). Developmental neurocircuitry of motivation in adolescence: A critical period of addiction vulnerability. American Journal of Psychiatry, 160(6), 1041–1052.PubMedCrossRefGoogle Scholar
  13. Creswell, J. D., Way, B. M., Eisenberger, N. I., & Lieberman, M. D. (2007). Neural correlates of dispositional mindfulness during affect labeling. Psychosomatic Medicine, 69(6), 560–565.PubMedCrossRefGoogle Scholar
  14. Crockford, D. N., Goodyear, B., Edwards, J., Quickfall, J., & el-Guebaly, N. (2005). Cue-induced brain activity in pathological gamblers. Biological Psychiatry, 58(10), 787–795.PubMedCrossRefGoogle Scholar
  15. Damasio, A. R. (1994). Descartes’ error. New York, NY: Grosset/Putnam, G. P. Putnam’s Sons.Google Scholar
  16. de Ruiter, M. B., Veltman, D. J., Goudriaan, A. E., Oosterlaan, J., Sjoerds, Z., & van den Brink, W. (2009). Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology, 34(4), 1027–1038.PubMedCrossRefGoogle Scholar
  17. Desai, R. A., Desai, M. M., & Potenza, M. N. (2007). Gambling, health and age: Data from the National Epidemiologic Survey on Alcohol and Related Conditions. Psychology of Addictive Behaviors, 21(4), 431–440.PubMedCrossRefGoogle Scholar
  18. Dom, G., Sabbe, B., Hulstijn, W., & van den Brink, W. (2005). Substance use disorders and the orbitofrontal cortex: Systematic review of behavioural decision-making and neuroimaging studies. British Journal of Psychiatry, 187, 209–220.PubMedCrossRefGoogle Scholar
  19. Elliott, R., Dolan, R. J., & Frith, C. D. (2000). Dissociable functions in the medial and lateral orbitofrontal cortex: Evidence from human neuroimaging studies. Cerebral Cortex, 10(3), 308–317.PubMedCrossRefGoogle Scholar
  20. Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nature Neuroscience, 8(11), 1481–1489.PubMedCrossRefGoogle Scholar
  21. Fink, G. R., Markowitsch, H. J., Reinkemeier, M., Bruckbauer, T., Kessler, J., & Heiss, W. D. (1996). Cerebral representation of one’s own past: Neural networks involved in autobiographical memory. Journal of Neuroscience, 16(13), 4275–4282.PubMedGoogle Scholar
  22. Friston, K. J., Ashburner, J., Frith, C. D., Poline, J.-B., Heather, J. D., & Frackowiak, R. S. J. (1995). Spatial registration and normalization of images. Human Brain Mapping, 3, 165–189.CrossRefGoogle Scholar
  23. Frost, R. O., Meagher, B. M., & Riskind, J. H. (2001). Obsessive-compulsive features in pathological lottery and scratch-ticket gamblers. Journal of Gambling Studies, 17(1), 5–19.PubMedCrossRefGoogle Scholar
  24. Ghashghaei, H. T., & Barbas, H. (2002). Pathways for emotion: Interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience, 115(4), 1261–1279.PubMedCrossRefGoogle Scholar
  25. Giraud, A. L., Kell, C., Thierfelder, C., Sterzer, P., Russ, M. O., Preibisch, C., et al. (2004). Contributions of sensory input, auditory search and verbal comprehension to cortical activity during speech processing. Cerebral Cortex, 14(3), 247–255.PubMedCrossRefGoogle Scholar
  26. Goldstein, R. Z., & Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. American Journal of Psychiatry, 159(10), 1642–1652.PubMedCrossRefGoogle Scholar
  27. Goudriaan, A. E., de Ruiter, M. B., van den Brink, W., Oosterlaan, J., & Veltman, D. J. (2010). Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addiction Biology, 15, 491–503.Google Scholar
  28. Grant, J. E., Kim, S. W., Hollander, E., & Potenza, M. N. (2008). Predicting response to opiate antagonists and placebo in the treatment of pathological gambling. Psychopharmacology (Berl), 200(4), 521–527.CrossRefGoogle Scholar
  29. Grant, S., London, E. D., Newlin, D. B., Villemagne, V. L., Liu, X., Contoreggi, C., et al. (1996). Activation of memory circuits during cue-elicited cocaine craving. Proceedings of the National Academy of Sciences of the Unites States of America, 93(21), 12040–12045.CrossRefGoogle Scholar
  30. Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proceedings of the National Academy of Sciences of the Unites States of America, 98(7), 4259–4264.CrossRefGoogle Scholar
  31. Habel, U., Klein, M., Kellermann, T., Shah, N. J., & Schneider, F. (2005). Same or different? Neural correlates of happy and sad mood in healthy males. Neuroimage, 26(1), 206–214.PubMedCrossRefGoogle Scholar
  32. Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 297(5580), 400–403.PubMedCrossRefGoogle Scholar
  33. Hoistad, M., & Barbas, H. (2008). Sequence of information processing for emotions through pathways linking temporal and insular cortices with the amygdala. Neuroimage, 40(3), 1016–1033.PubMedCrossRefGoogle Scholar
  34. Jatzko, A., Schmitt, A., Demirakca, T., Weimer, E., & Braus, D. F. (2006). Disturbance in the neural circuitry underlying positive emotional processing in post-traumatic stress disorder (PTSD). An fMRI study. European Archives of Psychiatry and Clinical Neuroscience, 256(2), 112–114.PubMedCrossRefGoogle Scholar
  35. Kilts, C. D., Schweitzer, J. B., Quinn, C. K., Gross, R. E., Faber, T. L., Muhammad, F., et al. (2001). Neural activity related to drug craving in cocaine addiction. Archives of General Psychiatry, 58(4), 334–341.PubMedCrossRefGoogle Scholar
  36. Kim, S. W., Grant, J. E., Adson, D. E., & Shin, Y. C. (2001). Double-blind naltrexone and placebo comparison study in the treatment of pathological gambling. Biological Psychiatry, 49(11), 914–921.PubMedCrossRefGoogle Scholar
  37. Kondo, H., Saleem, K. S., & Price, J. L. (2005). Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys. Journal of Comparative Neurology, 493(4), 479–509.PubMedCrossRefGoogle Scholar
  38. Lane, R. D., Reiman, E. M., Bradley, M. M., Lang, P. J., Ahern, G. L., Davidson, R. J., et al. (1997). Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia, 35(11), 1437–1444.PubMedCrossRefGoogle Scholar
  39. Ledgerwood, D. M., & Petry, N. M. (2006). What do we know about relapse in pathological gambling? Clinical Psychology Review, 26(2), 216–228.PubMedCrossRefGoogle Scholar
  40. Lesieur, H. R., & Blume, S. B. (1987). The South Oaks Gambling Screen (SOGS): A new instrument for the identification of pathological gamblers. American Journal of Psychiatry, 144(9), 1184–1188.PubMedGoogle Scholar
  41. Maguire, E. A., & Mummery, C. J. (1999). Differential modulation of a common memory retrieval network revealed by positron emission tomography. Hippocampus, 9(1), 54–61.PubMedCrossRefGoogle Scholar
  42. Malhi, G. S., Lagopoulos, J., Owen, A. M., Ivanovski, B., Shnier, R., & Sachdev, P. (2007). Reduced activation to implicit affect induction in euthymic bipolar patients: An fMRI study. Journal of Affective Disorders, 97(1–3), 109–122.PubMedCrossRefGoogle Scholar
  43. McClernon, F. J., Kozink, R. V., & Rose, J. E. (2008). Individual differences in nicotine dependence, withdrawal symptoms, and sex predict transient fMRI-BOLD responses to smoking cues. Neuropsychopharmacology, 33, 2148–2157.Google Scholar
  44. New, A. S., Hazlett, E. A., Buchsbaum, M. S., Goodman, M., Reynolds, D., Mitropoulou, V., et al. (2002). Blunted prefrontal cortical 18fluorodeoxyglucose positron emission tomography response to meta-chlorophenylpiperazine in impulsive aggression. Archives of General Psychiatry, 59(7), 621–629.PubMedCrossRefGoogle Scholar
  45. Oei, T. P., & Gordon, L. M. (2008). Psychosocial factors related to gambling abstinence and relapse in members of gamblers anonymous. Journal of Gambling Studies, 24(1), 91–105.PubMedCrossRefGoogle Scholar
  46. Olson, I. R., Plotzker, A., & Ezzyat, Y. (2007). The enigmatic temporal pole: A review of findings on social and emotional processing. Brain, 130(Pt 7), 1718–1731.PubMedCrossRefGoogle Scholar
  47. Paulus, M. P., Tapert, S. F., & Schuckit, M. A. (2005). Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Archives of General Psychiatry, 62(7), 761–768.PubMedCrossRefGoogle Scholar
  48. Petry, N. M., Stinson, F. S., & Grant, B. F. (2005). Comorbidity of DSM-IV pathological gambling and other psychiatric disorders: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Journal of Clinical Psychiatry, 66(5), 564–574.PubMedCrossRefGoogle Scholar
  49. Piefke, M., Weiss, P. H., Zilles, K., Markowitsch, H. J., & Fink, G. R. (2003). Differential remoteness and emotional tone modulate the neural correlates of autobiographical memory. Brain, 126(Pt 3), 650–668.PubMedCrossRefGoogle Scholar
  50. Pitman, R. K. (1987). A cybernetic model of obsessive-compulsive psychopathology. Comprehensive Psychiatry, 28(4), 334–343.PubMedCrossRefGoogle Scholar
  51. Posner, J., Russell, J. A., Gerber, A., Gorman, D., Colibazzi, T., Yu, S., et al. (2009). The neurophysiological bases of emotion: An fMRI study of the affective circumplex using emotion-denoting words. Human Brain Mapping, 30, 883–895.Google Scholar
  52. Potenza, M. N. (2008). The neurobiology of pathological gambling and drug addiction: An overview and new findings. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1507), 3181–3189.PubMedCrossRefGoogle Scholar
  53. Potenza, M. N., Leung, H. C., Blumberg, H. P., Peterson, B. S., Fulbright, R. K., Lacadie, C. M., et al. (2003a). An FMRI Stroop task study of ventromedial prefrontal cortical function in pathological gamblers. American Journal of Psychiatry, 160(11), 1990–1994.PubMedCrossRefGoogle Scholar
  54. Potenza, M. N., Steinberg, M. A., Skudlarski, P., Fulbright, R. K., Lacadie, C. M., Wilber, M. K., et al. (2003b). Gambling urges in pathological gambling: A functional magnetic resonance imaging study. Archives of General Psychiatry, 60(8), 828–836.PubMedCrossRefGoogle Scholar
  55. Potenza, M. N., Xian, H., Shah, K., Scherrer, J. F., & Eisen, S. A. (2005). Shared genetic contributions to pathological gambling and major depression in men. Archives of General Psychiatry, 62(9), 1015–1021.PubMedCrossRefGoogle Scholar
  56. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682.PubMedCrossRefGoogle Scholar
  57. Rao, H., Mamikonyan, E., Detre, J. A., Siderowf, A. D., Stern, M. B., Potenza, M. N., et al. (2010). Decreased ventral striatal activity with impulse control disorders in Parkinson’s disease. Movement Disorders, 25, 1660–1669.Google Scholar
  58. Raylu, N., & Oei, T. P. (2004). The gambling urge scale: development, confirmatory factor validation, and psychometric properties. Psychology of Addictive Behaviors, 18, 100–105.Google Scholar
  59. Reuter, J., Raedler, T., Rose, M., Hand, I., Glascher, J., & Buchel, C. (2005). Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nature Neuroscience, 8(2), 147–148.PubMedCrossRefGoogle Scholar
  60. Ridderinkhof, K. R., de Vlugt, Y., Bramlage, A., Spaan, M., Elton, M., Snel, J., et al. (2002). Alcohol consumption impairs detection of performance errors in mediofrontal cortex. Science, 298(5601), 2209–2211.PubMedCrossRefGoogle Scholar
  61. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443–447.PubMedCrossRefGoogle Scholar
  62. Romer Thomsen, K., Callesen, M. B., Linnet, J., Kringelbach, M. L., & Moller, A. (2009). Severity of gambling is associated with severity of depressive symptoms in pathological gamblers. Behavioural Pharmacology, 20(5–6), 527–536.PubMedCrossRefGoogle Scholar
  63. Schmahmann, J. D. (1996). From movement to thought: Anatomic substrates of the cerebellar contribution to cognitive processing. Human Brain Mapping, 4, 174–198.PubMedCrossRefGoogle Scholar
  64. Sell, L. A., Morris, J. S., Bearn, J., Frackowiak, R. S., Friston, K. J., & Dolan, R. J. (2000). Neural responses associated with cue evoked emotional states and heroin in opiate addicts. Drug and Alcohol Dependence, 60(2), 207–216.PubMedCrossRefGoogle Scholar
  65. Shallice, T., Fletcher, P., Frith, C. D., Grasby, P., Frackowiak, R. S., & Dolan, R. J. (1994). Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature, 368(6472), 633–635.PubMedCrossRefGoogle Scholar
  66. Shaywitz, S., Shaywitz, B. A., Pugh, K. R., Fulbright, R. K., Skudlarski, P., Mencl, W. E., et al. (1999). Effect of estrogen on brain activation patterns in postmenopausal women during working memory tasks. JAMA, 281, 1197–1202.PubMedCrossRefGoogle Scholar
  67. Siever, L. J., Buchsbaum, M. S., New, A. S., Spiegel-Cohen, J., Wei, T., Hazlett, E. A., et al. (1999). d, l-fenfluramine response in impulsive personality disorder assessed with [18F]fluorodeoxyglucose positron emission tomography. Neuropsychopharmacology, 20(5), 413–423.PubMedCrossRefGoogle Scholar
  68. Skudlarski, P., Constable, R. T., & Gore, J. C. (1999). ROC analysis of statistical methods used in functional MRI: Individual subjects. NeuroImage, 9(3), 311–329.PubMedCrossRefGoogle Scholar
  69. Steeves, T. D., Miyasaki, J., Zurowski, M., Lang, A. E., Pellecchia, G., Van Eimeren, T., et al. (2009). Increased striatal dopamine release in Parkinsonian patients with pathological gambling: A [11C] raclopride PET study. Brain, 132(Pt 5), 1376–1385.PubMedCrossRefGoogle Scholar
  70. Stefanacci, L., Suzuki, W. A., & Amaral, D. G. (1996). Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys. Journal of Comparative Neurology, 375(4), 552–582.PubMedCrossRefGoogle Scholar
  71. Steinvorth, S., Corkin, S., & Halgren, E. (2006). Ecphory of autobiographical memories: An fMRI study of recent and remote memory retrieval. Neuroimage, 30(1), 285–298.PubMedCrossRefGoogle Scholar
  72. Stinchfield, R. (2002). Youth gambling: How big a problem? Psychiatric Annals, 32, 197–202.Google Scholar
  73. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. Thieme Medical, New York.Google Scholar
  74. Tanabe, J., Thompson, L., Claus, E., Dalwani, M., Hutchison, K., & Banich, M. T. (2007). Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision-making. Human Brain Mapping, 28(12), 1276–1286.PubMedCrossRefGoogle Scholar
  75. Ursu, S., Stenger, V. A., Shear, M. K., Jones, M. R., & Carter, C. S. (2003). Overactive action monitoring in obsessive-compulsive disorder: Evidence from functional magnetic resonance imaging. Psychological Science, 14(4), 347–353.PubMedCrossRefGoogle Scholar
  76. Vandekerckhove, M. M., Markowitsch, H. J., Mertens, M., & Woermann, F. G. (2005). Bi-hemispheric engagement in the retrieval of autobiographical episodes. Behavioural Neurology, 16(4), 203–210.PubMedGoogle Scholar
  77. van Holst, R. J., van den Brink, W., Veltman, D. J., & Goudriaan, A. E. (2010). Why gamblers fail to win: A review of cognitive and neuroimaging findings in pathological gambling. Neuroscience and Biobehavioral Reviews, 34, 87–107.Google Scholar
  78. Wang, G. J., Volkow, N. D., Fowler, J. S., Cervany, P., Hitzemann, R. J., Pappas, N. R., et al. (1999). Regional brain metabolic activation during craving elicited by recall of previous drug experiences. Life Science, 64(9), 775–784.CrossRefGoogle Scholar
  79. Wexler, B. E., Gottschalk, C. H., Fulbright, R. K., Prohovnik, I., Lacadie, C. M., Rounsaville, B. J., et al. (2001). Functional magnetic resonance imaging of cocaine craving. American Journal of Psychiatry, 158(1), 86–95.PubMedCrossRefGoogle Scholar
  80. Wexler, B. E., Stevens, A. A., Bowers, A. A., Sernyak, M. J., & Goldman-Rakic, P. S. (1998). Word and tone working memory deficits in schizophrenia. Archives of General Psychiatry, 55(12), 1093–1096.PubMedCrossRefGoogle Scholar
  81. Wilson, S. J., Sayette, M. A., & Fiez, J. A. (2004). Prefrontal responses to drug cues: A neurocognitive analysis. Nature Neuroscience, 7(3), 211–214.PubMedCrossRefGoogle Scholar
  82. Yucel, M., Harrison, B. J., Wood, S. J., Fornito, A., Wellard, R. M., Pujol, J., et al. (2007). Functional and biochemical alterations of the medial frontal cortex in obsessive-compulsive disorder. Archives of General Psychiatry, 64(8), 946–955.PubMedCrossRefGoogle Scholar
  83. Zack, M., & Poulos, C. X. (2004). Amphetamine primes motivation to gamble and gambling-related semantic networks in problem gamblers. Neuropsychopharmacology, 29(1), 195–207.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Iris M. Balodis
    • 1
  • Cheryl M. Lacadie
    • 2
  • Marc N. Potenza
    • 3
    • 4
  1. 1.Department of PsychiatryYale University School of MedicineNew HavenUSA
  2. 2.Diagnostic RadiologyYale University School of MedicineNew HavenUSA
  3. 3.Department of PsychiatryYale University School of MedicineNew HavenUSA
  4. 4.Child Study CenterYale University School of MedicineNew HavenUSA

Personalised recommendations