Journal of Gambling Studies

, Volume 27, Issue 2, pp 317–330 | Cite as

Differential Item Functioning of Pathological Gambling Criteria: An Examination of Gender, Race/Ethnicity, and Age

  • Paul Sacco
  • Luis R. Torres
  • Renee M. Cunningham-Williams
  • Carol Woods
  • G. Jay Unick
Original Paper


This study tested for the presence of differential item functioning (DIF) in DSM-IV Pathological Gambling Disorder (PGD) criteria based on gender, race/ethnicity and age. Using a nationally representative sample of adults from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC), indicating current gambling (n = 10,899), Multiple Indicator-Multiple Cause (MIMIC) models tested for DIF, controlling for income, education, and marital status. Compared to the reference groups (i.e., Male, Caucasian, and ages 25–59 years), women (OR = 0.62; P < .001) and Asian Americans (OR = 0.33; P < .001) were less likely to endorse preoccupation (Criterion 1). Women were more likely to endorse gambling to escape (Criterion 5) (OR = 2.22; P < .001) but young adults (OR = 0.62; P < .05) were less likely to endorse it. African Americans (OR = 2.50; P < .001) and Hispanics were more likely to endorse trying to cut back (Criterion 3) (OR = 2.01; P < .01). African Americans were more likely to endorse the suffering losses (OR = 2.27; P < .01) criterion. Young adults were more likely to endorse chasing losses (Criterion 9) (OR = 1.81; P < .01) while older adults were less likely to endorse this criterion (OR = 0.76; P < .05). Further research is needed to identify factors contributing to DIF, address criteria level bias, and examine differential test functioning.


MIMIC modeling Differential item functioning Pathological Gambling Disorder Diagnostic criteria 



The National Epidemiological Survey on Alcohol and Related Conditions (NESARC) was conducted and funded by the National Institute on Alcohol Abuse and Alcoholism (NIAAA), with supplemental support from the National Institute on Drug Abuse (NIDA).


  1. American Educational Research Association, American Psychological Association, & National Council on Measurement in Education. (1999). Standards for educational and psychological testing. Washington, DC.Google Scholar
  2. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders: DSM-IV (4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
  3. Arnett, J. J. (2000). Emerging adulthood: A theory of development from the late teens through the twenties. American Psychologist, 55(5), 469–480.PubMedCrossRefGoogle Scholar
  4. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289–300.Google Scholar
  5. Blanco, C., Hasin, D. S., Petry, N., Stinson, F. S., & Grant, B. F. (2006). Sex differences in subclinical and DSM-IV pathological gambling: Results from the national epidemiologic survey on alcohol and related conditions. Psychological Medicine, 36(7), 943–953.PubMedCrossRefGoogle Scholar
  6. Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  7. Camilli, G., & Shepard, L. A. (1994). Methods for identifying biased test items. Thousand Oaks, CA: Sage Publications.Google Scholar
  8. Crisp, B. R., Thomas, S. A., Jackson, A. C., Smith, S., Borrell, J., Ho, W.-y., et al. (2004). Not the same: A comparison of female and male clients seeking treatment from problem gambling counselling services. Journal of Gambling Studies, 20(3), 283–299.PubMedCrossRefGoogle Scholar
  9. Cunningham-Williams, R. M., Cottler, L. B., Compton, W. M., & Spitznagel, E. L. (1998). Taking chances: Problem gamblers and mental health disorders—results from the St. Louis Epidemiological Catchment Area study. Journal of Public Health, 88, 1093–1096.CrossRefGoogle Scholar
  10. Cunningham-Williams, R. M., Cottler, L. B., Compton, W. M., & Spitznagel, E. L. (2000). Problem gambling and comorbid psychiatric and substance use disorders among drug users recruited from drug treatment and community settings. Journal of Gambling Studies, 16(4), 347–376.PubMedCrossRefGoogle Scholar
  11. Cunningham-Williams, R. M., Grucza, R. A., Cottler, L. B., Womack, S. B., Books, S. J., Przybeck, T. R., et al. (2005). Prevalence and predictors of pathological gambling: Results from the St. Louis personality, health and lifestyle (SLPHL) study. Journal of Psychiatric Research, 39(4), 377–390.PubMedCrossRefGoogle Scholar
  12. Cunningham-Williams, R. M., Ostmann, E. L., Spitznagel, E. L., & Books, S. J. (2007). Racial/ethnic variation in the reliability of pathological gambling disorder. Journal of Nervous and Mental Disease, 195(7), 551–559.PubMedCrossRefGoogle Scholar
  13. Desai, R., & Potenza, M. (2008). Gender differences in the associations between past-year gambling problems and psychiatric disorders. Social Psychiatry and Psychiatric Epidemiology, 43(3), 173–183.PubMedCrossRefGoogle Scholar
  14. Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  15. Gerstein, D., Hoffman, J., Larison, C., Engelman, L., Murphy, S., Palmer, A., et al. (1999). Gambling impact and behavior study (no. 0160594715). New York, NY: National Gambling Impact Study Commission.Google Scholar
  16. Gierl, M. J. (2005). Using dimensionality-based DIF analyses to identify and interpret constructs that elicit group differences. Educational Measurement: Issues and Practice, 24(1), 3–14.CrossRefGoogle Scholar
  17. Grant, B., & Dawson, D. (2005). Introduction to the national epidemiologic survey on alcohol and related conditions. Alcohol Research and Health, 29(2), 74.Google Scholar
  18. Grant, B. F., Harford, T. C., Dawson, D. A., Chou, P. S., & Pickering, R. P. (1995). The Alcohol and Associated Disability Interview Schedule (AUDADIS): Reliability of alcohol and drug modules in a general population sample. Drug and Alcohol Dependence, 39, 37–44 (Instrument Validation).PubMedCrossRefGoogle Scholar
  19. Grant, B. F., Kaplan, K., Shepard, J., & Moore, T. (2003). Source and accuracy statement for wave 1 of the 2001–2002 National Epidemiologic Survey on Alcohol and Related Conditions. Bethesda, MD: National Institute on Alcohol Abuse and Alcoholism.Google Scholar
  20. Hahs-Vaughn, D. L., & Lomax, R. G. (2006). Utilization of sample weights in single-level structural equation modeling. Journal of Experimental Education, 74(2), 163–190.CrossRefGoogle Scholar
  21. Levinson, D. J. (1986). A conception of adult development. American Psychologist, 41(1), 3–13.CrossRefGoogle Scholar
  22. Muthén, L. K., & Muthén, B. O. (1998–2009). Mplus users guide (4th ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
  23. Napoles-Springer, A. M., Santoyo-Olsson, J., O’Brien, H., & Stewart, A. L. (2006). Using cognitive interviews to develop surveys in diverse populations. Medical Care, 44(11), S21–S30.PubMedCrossRefGoogle Scholar
  24. National Research Council. (1999). Pathological gambling: A critical review. Washington, DC: National Academy Press.Google Scholar
  25. Nower, L., Derevensky, J. L., & Gupta, R. (2004). The relationship of impulsivity, sensation seeking, coping and substance use in youth gamblers. Psychology of Addictive Behaviors, 18(1), 49–55.PubMedCrossRefGoogle Scholar
  26. Petry, N. M., Stinson, F. S., & Grant, B. F. (2005). Comorbidity of DSM-IV pathological gambling and other psychiatric disorders: Results from the National Epidemiological Survey on Alcohol and Related Conditions. Journal of Clinical Psychiatry, 66(5), 564–574 (Research).PubMedCrossRefGoogle Scholar
  27. Raju, N. S., van der Linden, W. J., & Fleer, P. F. (1995). IRT-based internal measures of differential functioning of items and tests. Applied Psychological Measurement, 19(4), 353–368.CrossRefGoogle Scholar
  28. Raylu, N., & Oei, T. P. (2004). Role of culture in gambling and problem gambling. Clinical Psychology Review, 23(8), 1087–1114.PubMedCrossRefGoogle Scholar
  29. Research Triangle Institute. (2004). SUDAAN language manual, release 9.0. Research Triangle Park, NC: Research Triangle Institute.Google Scholar
  30. Shaffer, H., Hall, M. N., & Vander Bilt, J. (1999). Estimating the prevalence of disordered gambling behavior in the United States and Canada: A research synthesis. American Journal of Public Health, 89(9), 1369–1376.PubMedCrossRefGoogle Scholar
  31. Stinchfield, R., & Winters, K. C. (1998). Gambling and problem gambling among youths. Annals of the American Academy of Political and Social Science, 556, 172–185.CrossRefGoogle Scholar
  32. Strong, D. R., & Kahler, C. W. (2007). Evaluation of the continuum of gambling problems using the DSM-IV. Addiction, 102(5), 713–721.PubMedCrossRefGoogle Scholar
  33. Tang, C., Wu, A., & Tang, J. (2007). Gender differences in characteristics of Chinese treatment-seeking problem gamblers. Journal of Gambling Studies, 23(2), 145–156.PubMedCrossRefGoogle Scholar
  34. Teresi, J. A. (2006). Different approaches to differential item functioning in health applications. Advantages, disadvantages and some neglected topics. Medical Care, 44(11), S152–S170.PubMedCrossRefGoogle Scholar
  35. Thissen, D., Steinberg, L., & Kuang, D. (2002). Quick and easy implementation of the Benjamini-Hochberg procedure for controlling the false positive rate in multiple comparisons. Journal of Educational and Behavioral Statistics, 27(1), 77–83.CrossRefGoogle Scholar
  36. Thomas, D. R., & Cyr, A. (2002). Applying item response theory methods to complex survey data. Paper presented at the Proceedings, Statistical Society of Canada, Section on Survey Research Methods, Hamilton, ON.Google Scholar
  37. Toce-Gerstein, M., Gerstein, D. R., & Volberg, R. A. (2003). A hierarchy of gambling disorders in the community. Addiction, 98(12), 1661–1672.PubMedCrossRefGoogle Scholar
  38. U.S. Census Bureau. (2004). 2000 Census of population and housing, population and housing unit counts PHC-3-1 United States summary. Washington, DC: U.S. Census Bureau.Google Scholar
  39. Welte, J. W., Barnes, G. M., & Wieczorek, W. F. (2002). Gambling participation in the U.S.—results from a national survey. Journal of Gambling Studies, 18(4), 313–337.PubMedCrossRefGoogle Scholar
  40. Welte, J. W., Barnes, G. M., Wieczorek, W. F., & Tidwell, M. C. (2004). Gambling participation and pathology in the United States—a sociodemographic analysis using classification trees. Addictive Behaviors, 29(5), 983–989.PubMedCrossRefGoogle Scholar
  41. Welte, J. W., Barnes, G. M., Wieczorek, W. F., Tidwell, M.-C., & Parker, J. (2001). Alcohol and gambling pathology among U.S. adults: Prevalence, demographic patterns and comorbidity. Journal of Studies on Alcohol, 62(5), 706–712 (Research).PubMedGoogle Scholar
  42. Woods, C. M. (2009). Empirical selection of anchors for tests of differential item functioning. Applied Psychological Measurement, 33(1), 42–57.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Paul Sacco
    • 1
  • Luis R. Torres
    • 2
  • Renee M. Cunningham-Williams
    • 3
  • Carol Woods
    • 4
  • G. Jay Unick
    • 1
  1. 1.School of Social WorkUniversity of Maryland-BaltimoreBaltimoreUSA
  2. 2.Graduate College of Social WorkUniversity of HoustonHoustonUSA
  3. 3.George Warren Brown School of Social WorkWashington University in St. LouisSt. LouisUSA
  4. 4.Department of PsychologyWashington University in St. LouisSt. LouisUSA

Personalised recommendations