Advertisement

Journal of Gambling Studies

, Volume 24, Issue 4, pp 479–504 | Cite as

Designing a Longitudinal Cohort Study of Gambling in Alberta: Rationale, Methods, and Challenges

  • Nady el-Guebaly
  • David M. Casey
  • David C. Hodgins
  • Garry J. Smith
  • Robert J. Williams
  • Don P. Schopflocher
  • Robert T. Wood
Original Paper

Abstract

Longitudinal research on the determinants of gambling behavior is sparse. This article briefly reviews the previous seventeen longitudinally designed studies, focusing on the methodology for each study. This is followed by a description of our ongoing longitudinal study entitled the Leisure, Lifestyle, and Lifecycle Project (LLLP). Participants for the LLLP were recruited from four locations in Alberta, Canada, including both rural and urban populations. In the LLLP most participants were recruited using random digit dialing (RDD), with 1808 participants from 5 age cohorts at baseline: 13–15, 18–20, 23–25, 43–45, and 63–65. Individuals completed telephone, computer, and face-to-face surveys at baseline, with the data collection occurring between February and October, 2006. At baseline, a wide variety of constructs were measured, including gambling behavior, substance use, psychopathology, intelligence, family environment, and internalizing and externalizing problems. Finally, the conclusions that can be drawn thus far are discussed as well as the plans for three future data collections.

Keywords

Gambling Predictors Longitudinal study Methodology Cohort design 

Notes

Acknowledgements

The authors thank the valuable input of Vickii Williams, Executive Director, AGRI. Funding for this Study: Alberta Gambling Research Institute (AGRI).

References

  1. Abbott, M. W., & Clarke, D. (2007). Prospective problem gambling research: Contribution and potential. International Gambling Studies, 7, 123–144. doi: 10.1080/14459790701261714.CrossRefGoogle Scholar
  2. Abbott, M. W., Williams, M., & Volberg, R. A. (1999). Seven-years on: A follow-up study of frequent and problem gamblers living in the community. Wellington: Department of International Affairs.Google Scholar
  3. Abbott, M. W., Williams, M. M., & Volberg, R. A. (2004). A prospective study of problem and regular nonproblem gamblers living in the community. Substance Use and Misuse, 39, 855–884. doi: 10.1081/JA-120030891.
  4. ACCORD Research. (2000) Alberta gaming and liquor commission study of gaming attitudes in Alberta: Final report 2000 Presented to the Alberta Gaming and Liquor Commission by ACCORD Research at the University of Calgary.Google Scholar
  5. Achenbach, T. M., & Rescorla, L. A. (2001). Manual for the ASEBA school-age forms and profiles. Burlington, VT: University of Vermont, Research Center for Children, Youth & Families.Google Scholar
  6. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (DSM-IV) (4th ed.). Washington, DC: APA.Google Scholar
  7. Aquilino, W. S. (1997). Privacy effects on self-reported drug use: Interactions with survey mode and respondent characteristics. In L. Harrison & A. Hughes (Eds.), The validity of self-reported drug use: Improving the accuracy of survey estimates (NIDA research monograph 167). Rockville, MD: U.S. Department of Health and Human Services.Google Scholar
  8. Azmier, J. J. (2000, February). Canadian gambling behaviour and attitudes: Summary report. Gambling in Canada research report no. 8. Canada West Foundation.Google Scholar
  9. Barnes, G. M., Welte, J. W., Hoffman, J. H., & Dintcheff, B. A. (1999). Gambling and alcohol use among youth: Influences of demographic, socialization, and individual factors. Addictive Behaviors, 24, 749–767. doi: 10.1016/S0306-4603(99)00048-9.PubMedCrossRefGoogle Scholar
  10. Barnes, G. M., Welte, J. W., Hoffman, J. H., & Dintcheff, B. A. (2002). Effects of alcohol misuse on gambling patterns in youth. Journal of Studies on Alcohol, 63, 767–775.PubMedGoogle Scholar
  11. Barnes, G. M., Welte, J. W., Hoffman, J. H., & Dintcheff, B. A. (2005). Shared predictors of youth gambling, substance use, and delinquency. Psychology of Addictive Behaviors, 19, 165–174. doi: 10.1037/0893-164X.19.2.165.PubMedCrossRefGoogle Scholar
  12. Bell, R. Q. (1953). Convergence: An accelerated longitudinal approach. Child Development, 24, 145–152. doi: 10.2307/1126345.PubMedCrossRefGoogle Scholar
  13. Bernstein, D. P., Ahluvalia, T., Pogge, D., & Handelsman, L. (1997). Validity of the Childhood Trauma Questionnaire in an adolescent psychiatric population. Journal of American Academy of Child and Adolescent Psychiatry, 36, 340–348. doi: 10.1097/00004583-199703000-00012.CrossRefGoogle Scholar
  14. Bernstein, D. P., & Fink, L. (1998). Childhood Trauma Questionnaire (CTQ): A retrospective self- report. San Antonio, TX: The Psychological Corporation.Google Scholar
  15. Blaszczynski, A., Ladouceur, R., & Moodie, C. (In press). The Sydney Laval Universities Gambling Screen: Preliminary data. Addiction Research and Theory.Google Scholar
  16. Blaszczynski, A., & Nower, L. (2002). A pathway model of problem and pathological gambling. Addiction, 97, 487–499. doi: 10.1046/j.1360-0443.2002.00015.x.PubMedCrossRefGoogle Scholar
  17. Boots-Miller, B., Ribisl, K., Mowbray, C., Davidson, W., Walton, M., & Herman, S. (1998). Methods of ensuring high follow-up raters: Lessons from a longitudinal study of dual diagnosed participants. Substance Use and Misuse, 33, 2665–2685.Google Scholar
  18. Buckner, J. C. (1988). The development of an instrument to measure neighborhood cohesion. American Journal of Community Psychology, 16, 771–791. doi: 10.1007/BF00930892.CrossRefGoogle Scholar
  19. Cameron, J. E. (2004). A three-factor model of social identity. Self and Identity, 3, 239–262. doi: 10.1080/13576500444000047.CrossRefGoogle Scholar
  20. Claus, R. E., Kindleberger, L. R., & Dugan, M. C. (2002). Predictors of attrition in a longitudinal study of substance abusers. Journal of Psychoactive Drugs, 34, 69–74.PubMedGoogle Scholar
  21. Collins, R. L., Ellicson, P. L., Hays, R. D., & McCaffrey, D. F. (2000). Effects of incentive size and timing on response rates to a follow-up wave of a longitudinal mailed survey. Evaluation Review, 24, 347–363.PubMedCrossRefGoogle Scholar
  22. Costa, P. T., & McCrae, R. R. (1992). Revised NEO personality inventory (NEO PI-R) and NEO five-factor inventory (NEO-FFI): Professional Manual. Lutz, FL: Psychological Assessment Resources, Inc.Google Scholar
  23. Cotter, R. B., Burke, J. D., Loeber, R., & Navratil, J. L. (2002). Innovative retention methods in longitudinal research: A case study of the developmental trends study. Journal of Child and Family Studies, 11, 485–498. doi: 10.1023/A:1020939626243.CrossRefGoogle Scholar
  24. Cottler, L. B., & Cunningham-Williams, R. M. (2000). The 11-year incidence of gambling problems among drug users recruited from the St. Louis ECA Study. The Wager, 5, 1–2.Google Scholar
  25. Council of American Survey Research Organizations (CASRO). (1982). On the definition of response rates. Port Jefferson, NY: CASRO.Google Scholar
  26. Cunningham-Williams, R. M., Cottler, L. B., Compton, W. M., & Spitznagel, E. L. (1998). Taking chances: Problem gamblers and mental health disorders–Results from the St. Louis Epidemiologic Catchment Area Study. American Journal of Public Health, 88, 1093–1096.PubMedGoogle Scholar
  27. Cunningham-Williams, R. M., Cottler, L. B., Compton, W. M., Spitznagel, E. L., & Ben-Abdallah, A. (2000). Problem gambling and comorbid psychiatric and substance use disorders among drug users recruited from drug treatment and community settings. Journal of Gambling Studies, 16, 347–376. doi: 10.1023/A:1009428122460.PubMedCrossRefGoogle Scholar
  28. Cunningham-Williams, R. M., Grucza, R. A., Cottler, L. B., Womack, S. B., Books, S. J., Przybeck, T. R., et al. (2005). Prevalence and predictors of pathological gambling: Results from the St. Louis personality, health and lifestyle (SLPHL) study. Journal of Psychiatric Research, 39, 377–390.PubMedCrossRefGoogle Scholar
  29. DeFuentes-Merillas, L., Koeter, M. W. J., Schippers, G. M., & van den Brink, W. (2004). Temporal stability of pathological scratchcard gambling among adult scratchcard buyers two years later. Addiction, 99, 117–127. doi: 10.1111/j.1360-0443.2004.00601.x.PubMedCrossRefGoogle Scholar
  30. Dickerson, M. (2003). Exploring the limits of responsible gambling: Harm minimization or consumer protection? Journal of the National Association for Gambling Studies, 15(1), 29–44.Google Scholar
  31. Dickerson, M., & Baron, E. (2000). Contemporary issues and future directions for research into pathological gambling. Addiction, 95, 1145–1159. doi: 10.1080/09652140050111087.PubMedCrossRefGoogle Scholar
  32. Edwards, G., Arif, A., & Hodgson, R. (1981). Nomenclature and classification of drug and alcohol related problems. WHO Bulletin, 99, 225. World Health Organization.Google Scholar
  33. el-Guebaly, N., & Hodgins, D. (2000). Pathological gambling: Biopsychosocial dimension and treatment. Edmonton, AB: Alberta Gaming Research Institute.Google Scholar
  34. Farrington, D. P. (1991). Longitudinal research strategies: Advantages, problems, and prospects. Journal of the American Academy of Child & Adolescent Psychiatry, 30, 369–374. doi: 10.1097/00004583-199105000-00003.CrossRefGoogle Scholar
  35. Ferris, J., & Wynne, H. (2001). The Canadian Problem Gambling Index final report. Phase II final report to the Canadian Inter-Provincial Task Force on Problem Gambling.Google Scholar
  36. Ferris, J., Wynne, H., & Single, E. (1999). Measuring problem gambling in Canada: Final report. Ontario, CCSA: Canadian Centre on Substance Abuse.Google Scholar
  37. Fisher, S. E. (2000). Developing the DSM IV criteria to identify adolescent problem gambling in non-clinical populations. Journal of Gambling Studies, 16, 253–273. doi: 10.1023/A:1009437115789.PubMedCrossRefGoogle Scholar
  38. Freeman, H. E. (1983). Research opportunities related to CATI. Sociological Methods and Research, 12(2), 143–152. doi: 10.1177/0049124183012002003.CrossRefGoogle Scholar
  39. Glenn, N. D. (1977). Cohort analysis. Beverly Hills, CA: Sage.Google Scholar
  40. Hodgins, D. C., & el-Guebaly, N. (2004). Retrospective and prospective reports of precipitants to relapse in pathological gambling. Journal of Consulting and Clinical Psychology, 72, 72–80. doi: 10.1037/0022-006X.72.1.72.PubMedCrossRefGoogle Scholar
  41. Hodgins, D. C., Peden, N., & Cassidy, E. (2005). The association between comorbidity and outcome in pathological gambling: A prospective follow-up of recent quitters. Journal of Gambling Studies, 21, 255–271. doi: 10.1007/s10899-005-3099-3.PubMedCrossRefGoogle Scholar
  42. Jacques, C., & Ladouceur, R. (2006). A prospective study of the impact of opening a casino on gambling behaviours: 2- and 4-year follow-ups. Canadian Journal of Psychiatry, 51, 764–773.Google Scholar
  43. Jacques, C., Ladouceur, R., & Ferland, F. (2000). Impact of availability on gambling: A longitudinal study. Canadian Journal of Psychiatry, 45, 810–815.Google Scholar
  44. Jones, R., Zhou, M., & Yates, W. R. (2000). Improving return rates for health-care outcome. Psychological Reports, 87, 639–642. doi: 10.2466/PR0.87.6.639-642.PubMedCrossRefGoogle Scholar
  45. Kessler, R. C., Andrews, G., Mroczek, D., Ustun, B., & Wittchem, H. (1998). The World Health Organization Composite International Diagnostic Interview Short-Form (CIDI-SF). International Journal of Methods in Psychiatric Research, 7(4), 171–185. doi: 10.1002/mpr.47.CrossRefGoogle Scholar
  46. Kessler, R. C., McGonagle, K. A., Zhao, S., Nelson, C. B., Hughes, M., Eshleman, S., et al. (1994). Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Archives of General Psychiatry, 51, 8–19.PubMedGoogle Scholar
  47. Kongs, S. K., Thompson, L. L., Iverson, G. L., & Heaton, R. K. (2000). Wisconsin card sorting test—64 card version professional manual. Lutz, FL: Psychological Assessment Resources.Google Scholar
  48. LaBrie, R. A., LaPlante, D. A., Nelson, S. E., Schumann, A., & Shaffer, H. J. (2007). Assessing the playing field: A prospective longitudinal study of internet sports gambling behavior. Journal of Gambling Studies, 23, 347–362. doi: 10.1007/s10899-007-9067-3.CrossRefGoogle Scholar
  49. Ladouceur, R., Sylvain, C., & Gosselin, P. (2007). Self-exclusion program: A longitudinal evaluation study. Journal of Gambling Studies, 23, 85–94. doi: 10.1007/s10899-006-9032-6.PubMedCrossRefGoogle Scholar
  50. Loeber, R., & Farrington, D. P. (1994). Problems and solutions in longitudinal and experimental treatment studies of child psychopathology and delinquency. Journal of Consulting & Clinical Psychology, 62, 887–900. doi: 10.1037/0022-006X.62.5.887.CrossRefGoogle Scholar
  51. Loeber, R., & Farrington, D. P. (1995). Longitudinal approaches in epidemiological research of conduct problems. In F. C. Verhulst & H. M. Koot (Eds.), The epidemiology of child and adolescent psychopathology (pp. 309–336). Oxford: Oxford University Press.Google Scholar
  52. Lubben, J. E. (1988). Assessing social networks among elderly populations. Family and Community Health, 11, 42–52.Google Scholar
  53. Malo, S. (2007). Population projections for Alberta and its health regions, 2006 to 2035. http://www.health.alberta.ca/resources/publications/PopProj_06.pdf. Accessed 23 June 2008.
  54. McAllister, I., & Makkai, T. (1991). Correcting for the underreporting of drug use in opinion surveys. The International Journal of the Addictions, 26, 945–961.PubMedGoogle Scholar
  55. McCowan, W. G., & Chamberlain, L. L. (2000). Best possible odds: Contemporary treatment strategies for gambling disorders. New York: John Wily.Google Scholar
  56. McGowan, V., Droessler, D., Nixon, G., & Grimshaw, M. (2000). Recent research in the socio- cultural domain of gaming and gambling: An annotated bibliography and critical overview. Edmonton, AB: Alberta Gaming Research Institute.Google Scholar
  57. Moos, R. H., & Moos, B. S. (2002). A social climate scale: Family Environment Scale Manual: Development, Applications, Research (3rd ed.). Palo Alto, CA: Mind Garden, Inc.Google Scholar
  58. Morey, L. C. (1991). The personality assessment inventory: Professional manuel. Odessa, FL: Psychological Assessment Resources Inc.Google Scholar
  59. Morrisson, T. C., Wahlgren, D. R., Hovell, M. F., Zakarian, J. U., Burhman-Kreitner, S., Hofstetter, C. R., et al. (1997). Tracking and follow-up of 16, 915 adolescents: Minimizing attrition bias. Controlled Clinical Trials, 18, 383–96. doi: 10.1016/S0197-2456(97)00025-1.CrossRefGoogle Scholar
  60. PsychCorp. (1999). Wechsler abbreviated scale of intelligence manual. San Antonio, TX: Harcourt Assessment Inc.Google Scholar
  61. Raylu, N., & Oei, T. P. S. (2002). Pathological gambling: A comprehensive review. Clinical Psychology Review, 22, 1009–1061. doi: 10.1016/S0272-7358(02)00101-0.PubMedCrossRefGoogle Scholar
  62. Rohrbaugh, J., & Jessor, R. (1975). Religiosity in youth: A personal control against deviant behavior. Journal of Personality, 43, 136–155. doi: 10.1111/j.1467-6494.1975.tb00577.x.PubMedCrossRefGoogle Scholar
  63. Salyer, J., Geddes, N., Smith, C. S., & Mark, B. A. (1998). Commitment and communication: Keys to minimizing attrition in multisite longitudinal organizational studies. Nursing Research, 47, 123–125. doi: 10.1097/00006199-199803000-00012.PubMedCrossRefGoogle Scholar
  64. Schaeffer, N. C. (2000). Asking questions about threatening topics: A selective overview. In A. A. Stone & J. S. Turkkan (Eds.), The science of self-report: Implications for research and practice (pp. 105–121). Mahwah, NJ: Erlbaum.Google Scholar
  65. Schumm, W. R., Paff-Bergen, L. A., Hatch, R. C., Obiorah, F. C., Copeland, J. M., Meens, L. D., et al. (1986). Concurrent and discriminant validity of the Kansas Marital Satisfaction Scale. Journal of Marriage and the Family, 48, 381–387. doi: 10.2307/352405.CrossRefGoogle Scholar
  66. Shaffer, H. J., & Hall, M. N. (2001). Updating and refining prevalence estimates of disordered gambling behavior in the United States and Canada. Canadian Journal of Public Health, 92, 168–172.Google Scholar
  67. Shaffer, H. J., & Hall, M. N. (2002). The natural history of gambling and drinking problems among casino employees. The Journal of Social Psychology, 142, 405–424.PubMedCrossRefGoogle Scholar
  68. Slutske, W. S. (2007). Longitudinal studies of gambling behavior. In G. Smith, D. C. Hodgins, & R. J. Williams (Eds.), Research and measurement issues in gambling studies (pp. 127–154). San Francisco, CA: Elsevier.Google Scholar
  69. Slutske, W. S., Caspi, A., Moffitt, T. E., & Poulton, R. (2005). Personality and problem gambling: A prospective study of a birth cohort of young adults. Archive of General Psychiatry, 62, 769–775. doi: 10.1001/archpsyc.62.7.769.CrossRefGoogle Scholar
  70. Slutske, W. S., Jackson, K. M., & Sher, K. J. (2003). The natural history of problem gambling from age 18 to 29. Journal Abnormal Psychology, 112, 263–274. doi: 10.1037/0021-843X.112.2.263.CrossRefGoogle Scholar
  71. Smith, G. J., & Wynne, H. J. (2000). A review of the gambling literature in the economic and policy domains. Edmonton, AB: Alberta Gaming Research Institute.Google Scholar
  72. Smith, G., & Wynne, H. (2002). Measuring gambling and problem gambling in Alberta using the Canadian Problem Gambling Index. A report prepared for the Alberta Gaming Research Institute. Edmonton, AB.Google Scholar
  73. Smith, G., & Wynne, H. (2004). VLT gambling in Alberta: A preliminary analysis. A report prepared for the Alberta Gaming Research Institute. Edmonton, AB.Google Scholar
  74. Statistics Canada. (2001). Statistics Canada 2001 Census. Ottawa, ON: Statistics Canada.Google Scholar
  75. Statistics Canada & the Canadian Institutes of Health Research: Canadian Community Health Survey (CCHS). (2002, May). Cycle 1.2: Mental Health and Well-Being.Google Scholar
  76. Supple, A. J., Aquilino, W. S., & Wright, D. L. (1999). Collecting sensitive self-report data with laptop computers: Impact on the response tendencies of adolescents in a home interview. Journal of Research on Adolescence, 9, 467–488. doi: 10.1207/s15327795jra0904_5.CrossRefGoogle Scholar
  77. Tourangeau, R., & Smith, T. W. (1996). Asking sensitive questions: The impact of data collection mode, question format, and question context. Public Opinion Quarterly, 60, 275–304. doi: 10.1086/297751.CrossRefGoogle Scholar
  78. Tucker, C., Brick, J. M., Meekins, B., & Morganstein, D. (2004). Household telephone and usage patterns in the U.S. in 2004. Unpublished monograph.Google Scholar
  79. van Brunschot, E. G. (2000). Gambling in context: The socio-cultural domain literature overview and annotated bibliography. Edmonton, AB: Alberta Gaming Research Institute.Google Scholar
  80. Vander Bilt, J., Dodge, H. H., Pandav, R., Shaffer, H. J., & Ganguli, M. (2004). Gambling participation and social support among older adults: A longitudinal community study. Journal of Gambling Studies, 20, 373–390. doi: 10.1007/s10899-004-4580-0.PubMedCrossRefGoogle Scholar
  81. Vitaro, F., Arseneault, L., & Tremblay, R. E. (1997). Dispositional predictors of problem gambling in male adolescents. American Journal of Psychiatry, 154, 1769–1770.PubMedGoogle Scholar
  82. Vitaro, F., Arseneault, L., & Tremblay, R. E. (1999). Impulsivity predicts problem gambling in low SES adolescent males. Addiction, 94, 565–575. doi: 10.1046/j.1360-0443.1999.94456511.x.PubMedCrossRefGoogle Scholar
  83. Vitaro, F., Brendgen, M., Ladouceur, R., & Tremblay, R. E. (2001). Gambling, delinquency, and drug use during adolescence: Mutual influences and common risk factors. Journal of Gambling Studies, 17, 171–190. doi: 10.1023/A:1012201221601.PubMedCrossRefGoogle Scholar
  84. Vitaro, F., Ladouceur, R., & Bujold, A. (1996). Predictive and concurrent correlates of gambling in early adolescent boys. Journal of Early Adolescence, 16, 211–228. doi: 10.1177/0272431696016002005.CrossRefGoogle Scholar
  85. Vitaro, F., Wanner, B., Ladouceur, R., Brendgen, M., & Tremblay, R. E. (2004). Trajectories of gambling during adolescence. Journal of Gambling Studies, 20, 47–69. doi: 10.1023/B:JOGS.0000016703.84727.d3.PubMedCrossRefGoogle Scholar
  86. Volberg, R. A. (2007). Population surveys. In G. Smith, D. C. Hodgins, & R. J. Williams (Eds.), Research and measurement issues in gambling studies (pp. 33–54). San Francisco, CA: Elsevier.Google Scholar
  87. Vuchinich, R. E., Tucker, J. A., & Harllee, L. M. (1986). Individual differences in the reliability of alcoholics’ report on drinking. Washington, DC: American Psychological Association.Google Scholar
  88. Wanner, B., Vitaro, F., Ladouceur, R., Brendgen, M., & Tremblay, R. E. (2004). Joint trajectories of gambling, alcohol, and marijuana use during adolescence: A person- and variable-centered developmental approach. Addictive Behavior, 31, 566–580. doi: 10.1016/j.addbeh.2005.05.037.CrossRefGoogle Scholar
  89. Ware, J. E., Kosinski, M., Dewey, J. E., & Gandek, B. (2001). How to score and interpret single- item health status measures: A manual for users of the SF-8 Health Survey. Lincoln, RI: Quality Metrics Incorporated.Google Scholar
  90. Wiebe, J., Cox, B., & Falkowski-Ham, A. (2003a). Psychological and social factors associated with problem gambling in Ontario: A one year follow-up study. Ontario: Responsible Gambling Council.Google Scholar
  91. Wiebe, J., Single, E., & Falkowski-Ham, A. (2001). Measuring gambling and problem gambling in Ontario. Ontario: Canadian Centre on Substance Abuse and Responsible Gambling Council.Google Scholar
  92. Wiebe, J., Single, E., & Falkowski-Ham, A. (2003b). Exploring the evolution of problem gambling: A one year follow-up study. Ontario: Responsible Gambling Council.Google Scholar
  93. Williams, R. J. (2003). Reliability and validity of four scales to assess gambling attitudes, gambling knowledge, gambling fallacies and ability to calculate gambling odds. Unpublished technical report.Google Scholar
  94. Williams, R. J., Connolly, D., Wood, R. T., & Nowatzki, N. (2006). Gambling and problem gambling in a sample of university students. Journal of Gambling Issues, 16 [online journal: http://www.camh.net/egambling/].
  95. Winters, K. C., & Anderson, N. (2000). Gambling involvement and drug use among adolescents. Journal of Gambling Studies, 16, 175–198. doi: 10.1023/A:1009480930810.PubMedCrossRefGoogle Scholar
  96. Winters, K. C., Stinchfield, R. D., Botzet, A., & Anderson, N. (2002). A prospective study of youth gambling behaviors. Psychology of Addictive Behaviors, 16, 3–9. doi: 10.1037/0893-164X.16.1.3.PubMedCrossRefGoogle Scholar
  97. Winters, K. C., Stinchfield, R. D., Botzet, A., & Slutske, W. S. (2005). Pathways of youth gambling problem severity. Psychology of Addictive Behaviors, 19, 104–107. doi: 10.1037/0893-164X.19.1.104.PubMedCrossRefGoogle Scholar
  98. Winters, K. C., Stinchfield, R. D., & Fulkerson, J. (1993a). Patterns of characteristics of adolescent gambling. Journal of Gambling Studies, 9, 371–386. doi: 10.1007/BF01014628.CrossRefGoogle Scholar
  99. Winters, K. C., Stinchfield, R. D., & Fulkerson, J. (1993b). Toward the development of an adolescent gambling problem severity scale. Journal of Gambling Studies, 9, 63–84. doi: 10.1007/BF01019925.CrossRefGoogle Scholar
  100. Winters, K. C., Stinchfield, R. D., & Kim, L. G. (1995). Monitoring adolescent gambling in Minnesota. Journal of Gambling Studies, 11, 165–183. doi: 10.1007/BF02107113.CrossRefGoogle Scholar
  101. World Health Organization. (1997). Composite international diagnostic interview (CIDI, version 2.1). Geneva: World Health Organization [WHO].Google Scholar
  102. Xian, H., Scherrrer, J. F., Slutske, W. S., Shah, K. R., Volberg, R., & Eisen, S. A. (2007). Genetic and environmental contributions to pathological gambling symptoms in a 10-year follow-up. Twin Research and Human Genetics, 10, 174–179. doi: 10.1375/twin.10.1.174.PubMedCrossRefGoogle Scholar
  103. Yeo, D., Mantel, H., & Liu, T. P. (1999). Bootstrap variance estimation for the National Population Health Survey, Proceedings of the Survey Research Methods Section, American Statistical Association. http://www.amstat.org/Sections/Srms/Proceedings/papers/1999_136.pdf. Accessed 23 June 2008.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nady el-Guebaly
    • 1
  • David M. Casey
    • 2
  • David C. Hodgins
    • 2
  • Garry J. Smith
    • 3
  • Robert J. Williams
    • 4
  • Don P. Schopflocher
    • 5
  • Robert T. Wood
    • 6
  1. 1.Addiction Division, Foothills Addictions ProgramUniversity of CalgaryCalgaryCanada
  2. 2.Department of PsychologyUniversity of CalgaryCalgaryCanada
  3. 3.Faculty of ExtensionUniversity of AlbertaEdmontonCanada
  4. 4.School of Health SciencesUniversity of LethbridgeLethbridgeCanada
  5. 5.Faculty of NursingUniversity of AlbertaEdmontonCanada
  6. 6.Department of SociologyUniversity of LethbridgeLethbridgeCanada

Personalised recommendations