Journal of Gambling Studies

, Volume 23, Issue 2, pp 185–199 | Cite as

A Cognitive Neuroscience Approach to Studying the Role of Overconfidence in Problem Gambling

  • Jazmin Camchong
  • Adam S. Goodie
  • Jennifer E. McDowell
  • Casey S. Gilmore
  • Brett A. Clementz
Original Paper


Research on the neural correlates of decision making in gambling tasks may be informative for understanding problem gambling. The present study explored confidence and overconfidence using magnetoencephalography (MEG) to measure brain activity during a judgment task. Nineteen undergraduates who self-identified as frequent gamblers (average age 19.7 years; 5 females, 14 males) participated in this study. Participants first completed the DIGS (Winters, Specker & Stinchfield, 2002), a measure of gambling pathology. They then engaged in a behavioral task of confidence assessment, wherein they answered two-alternative trivia questions and estimated the probability that each answer was correct. In a subsequent MEG task, they viewed the questions and a target answer, and indicated with a button press whether the target matched the correct answer. Confidence was directly related to activity in the right prefrontal cortex. Matching and mismatching targets were associated with activity in the medial occipital cortex and left supramarginal gyrus, respectively. An interaction of pathology and match/mismatch was observed in the right inferior occipital-temporal junction region, showing more activity following a mismatch in non-problem gamblers, but not in problem gamblers. Implications of the results for understanding of top–down modulation and attentional systems are discussed in relation to gambling behavior.


Cognitive neuroscience Decision making Overconfidence Gambling MEG 



This research was supported by Grants from the National Institute for Mental Health to ASG (MH067827) and BAC (MH57886), and by a Neuroimaging Project Pilot Grant from the University of Georgia Research Foundation.


  1. Baboushkin, H. R., Hardoon, K. K., & Derevensky, J. L. (2001). Underlying cognitions in gambling behavior among university students. Journal of Applied Social Psychology, 31, 1409–1430.CrossRefGoogle Scholar
  2. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.CrossRefGoogle Scholar
  3. Berg, P., & Scherg, M. (1994). A multiple source approach to the correction of eye artifacts. Electroencephalography and Clinical Neurophysiology, 90, 229–241.CrossRefGoogle Scholar
  4. Brand, M., Kalbe, E., Labudda, K., Fujiwara, E., Kessler, J., & Markowitsch, H. J. (2005). Decision-making impairments in patients with pathological gambling. Psychiatry Research, 133, 91–99.CrossRefGoogle Scholar
  5. Campbell, W. K., Goodie, A. S., & Foster, J. D. (2004). Narcissism, confidence and risk attitude. Journal of Behavioral Decision Making, 17, 297–311.CrossRefGoogle Scholar
  6. Carlton, P. L., & Manowitz, P. (1992). Behavioral restraint and symptoms of attention deficit disorder in alcoholics and pathological gamblers. Neuropsychobiology, 25, 44–48.Google Scholar
  7. Carlton, P. L., Manowitz, P., McBride, H., Nora, R., Swartzburg, M., Goldstein, L. (1987). Attention deficit disorder and pathological gambling. The Journal of Clinical Psychiatry, 48, 487–495.Google Scholar
  8. Cavedini, P., Riboldi, G., Keller, R., D’Annucci, A., & Bellodi, L. (2002). Frontal lobe dysfunction in pathological gambling patients. Biological Psychiatry, 51, 334–341.CrossRefGoogle Scholar
  9. Corbetta, M., Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3, 201–215.CrossRefGoogle Scholar
  10. Cox, R. W. (1996): AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.CrossRefGoogle Scholar
  11. Crockford, D. N., Goodyear, B., Edwards, J., Quickfall, J., & el-Guebaly, N. (2005). Cue-induced brain activity in pathological gamblers. Biological Psychiatry, 58, 787–795.CrossRefGoogle Scholar
  12. Dale, A. M., & Sereno M. I. (1993). Improved localization of cortical activity by combining EEG and MEG with cortical surface reconstruction: a linear approach. Journal of Cognitive Neuroscience, 5, 162– 176.CrossRefGoogle Scholar
  13. Davis, D., Sundahl, I., & Lesbo, M. (2000). Illusory personal control as a determinant of bet size and type in casino craps games. Journal of Applied Social Psychology, 30, 1224–1242.CrossRefGoogle Scholar
  14. Delfabbro, P. (2004). The stubborn logic of regular gamblers: Obstacles and dilemmas in cognitive gambling research. Journal of Gambling Studies, 20, 1–21.CrossRefGoogle Scholar
  15. Derrfuss, J., Brass, M., Neumann, J., & von Cramon, D. Y. (2005). Involvement of the inferior frontal junction in cognitive control: Meta-analyses of switching and stroop studies. Human Brain Mapping, 25, 22–34.CrossRefGoogle Scholar
  16. Dimitriadou, E., Barth, M., Windischberger, C., Hornik, K., Moser, E. (2004). A quantitative comparison of functional MRI cluster analysis. Artificial Intelligence in Medicine, 31, 57–71.CrossRefGoogle Scholar
  17. Dixon, M. R. (2000). Manipulating the illusion of control: Variations in gambling as a function of perceived control over chance outcomes. Psychological Record, 50, 705–719.Google Scholar
  18. Ferland, F., Ladouceur, R., & Vitaro, F. (2002). Prevention of problem gambling: Modifying misconceptions and increasing knowledge. Journal of Gambling Studies, 18, 19–29.CrossRefGoogle Scholar
  19. Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magnetic Resonance in Medicine, 33, 636– 647.CrossRefGoogle Scholar
  20. Foxe, J. J., & Simpson, G.V. (2002). Flow of activation from V1 to frontal cortex in humans. A framework for defining “early” visual processing. Experimental Brain Research, 142, 139–150.CrossRefGoogle Scholar
  21. Gigerenzer, G. (1991). How to make cognitive illusions disappear: Beyond “heuristics and biases”. In W. Stroche, & M. Hewstone (Eds.), European Review of Social Psychology (Vol. 2, pp. 83–115). New York: Wiley.Google Scholar
  22. Gilmore, C. S., Clementz, B. A., & Buckley, P. F. (2005). Stimulus sequence affects schizophrenia-normal differences in event processing during an auditory oddball task. Cognitive Brain Research, 24, 215–227.CrossRefGoogle Scholar
  23. Goodie, A. S. (2003). The effects of control on betting: Paradoxical betting on items of high confidence with low value. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 598–610.CrossRefGoogle Scholar
  24. Goodie, A. S. (2005). The role of perceived control and overconfidence in pathological gambling. Journal of Gambling Studies, 21, 481–501.CrossRefGoogle Scholar
  25. Henson, R. N. A., Rugg, M. D., Shallice, T., & Dolan, R. J. (2000). Confidence in recognition memory for words: Dissociating right prefrontal roles in episodic retrieval. Journal of Cognitive Neuroscience, 12, 913–923.CrossRefGoogle Scholar
  26. Kweitel, R., & Allen, F. C. L. (1998). Cognitive processes associated with gambling behaviour. Psychological Reports, 82, 147–153.Google Scholar
  27. Ladouceur, R., Sylvain, C., Boutin, C., & Doucet, C. (2003) Understanding and treating the pathological gambler. New York: Wiley & Sons.Google Scholar
  28. Ladouceur, R., Sylvain, C., Boutin, C., Lachance, S., Doucet, C., Leblond, J., & Jacques, C. (2001). Cognitive treatment of pathological gambling. Journal of Nervous and Mental Disease, 189, 774–780.CrossRefGoogle Scholar
  29. Ladouceur, R., Walker, M., & Becona, E. (1998). Aproximacion cognitiva para la comprension y tratamiento del juego patologico. [A cognitive approach to the understanding and treatment of pathological gambling]. Psicologia Contemporanea, 5.Google Scholar
  30. Langer, E. J. (1975). The illusion of control. Journal of Personality and Social Psychology, 32, 311–328.CrossRefGoogle Scholar
  31. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.CrossRefGoogle Scholar
  32. Moore, S. M., & Ohtsuka, K. (1999). Beliefs about control over gambling among young people, and their relation to problem gambling. Psychology of Addictive Behaviors, 13, 339–347.CrossRefGoogle Scholar
  33. Petry, N. M. (2005a). Cognitive biases and cognitive therapy. In N. M. Petry, (Ed.) Pathological gambling: Etiology, comorbidity, and treatment (pp. 209–226). Washington, DC: American Psychological Association.Google Scholar
  34. Petry, N. M. (2005b). Gamblers Anonymous and cognitive-behavioral therapies for pathological gamblers. Journal of Gambling Studies, 21, 27–33.CrossRefGoogle Scholar
  35. Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson Jr. R., Miller, G. A., Ritter, W., Ruchkin, D. S., Rugg, M. D., & Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37, 127–152.CrossRefGoogle Scholar
  36. Robson, E., Edwards, J., Smith, G., & Colman, I. (2002). Gambling decision: An early intervention program for problem gamblers. Journal of Gambling Studies, 18, 235–255.CrossRefGoogle Scholar
  37. Rugle, L., & Melamed, L. (1993). Neuropsychological assessment of attention problems in pathological gamblers. Journal of Nervous and Mental Disorders, 181, 107–112.Google Scholar
  38. Schaefer, P. S., Williams, C. C., Goodie, A. S., & Campbell, W. K. (2004). Overconfidence and the Big Five. Journal of Research in Personality, 38, 473–480.CrossRefGoogle Scholar
  39. Schutter, D. J. L. G., & Van Honk, J. (2005). Electrophysiological ratio markers for the balance between reward and punishment. Cognitive Brain Research, 24, 685–690.CrossRefGoogle Scholar
  40. Steenbergh, T. A., Meyers, A. W., May, R. K., & Whelan, J. P. (2002). Development and validation of the gamblers’ beliefs questionnaire. Psychology of Addictive Behaviors, 16, 143–149.CrossRefGoogle Scholar
  41. Toneatto, T. (1999). Cognitive psychopathology of problem gambling. Substance Use & Misuse, 34, 1593–1604.CrossRefGoogle Scholar
  42. Toneatto, T. (2002). Cognitive therapy for problem gambling. Cognitive and Behavioral Practice, 9, 191–199.CrossRefGoogle Scholar
  43. Toneatto, T., & Ladouceur, R. (2003). Treatment of pathological gambling: A critical review of the literature. Psychology of Addictive Behaviors, 17, 284–292.CrossRefGoogle Scholar
  44. Toneatto, T., & Millar, G. (2004). Assessing and treating problem gambling: Empirical status and promising trends. Canadian Journal of Psychiatry, 49, 517–525.Google Scholar
  45. Tranel, D., Bechara, A., & Denburg, N. L. (2002). Asymmetric functional roles of right and left ventromedial prefrontal cortices in social conduct, decision making and emotional processing. Cortex, 38, 589–612.Google Scholar
  46. Wang, J. & Kaufman, L. (2003). Magnetic Source Imaging: Search for Inverse Solutions. In Z. Lu, & L. Kaufman (Eds.), (pp. 101–133). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  47. Winters, K. C., Specker, S., & Stinchfield, R. S. (2002). Measuring pathological gambling with the Diagnostic Interview for Gambling Severity (DIGS) . In J. J. Marotta, J. A. Cornelius, & W. R. Eadington (Eds.), The downside: Problem and pathological gambling. (pp. 143–148). Reno, Nevada: University of Nevada.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Jazmin Camchong
    • 1
  • Adam S. Goodie
    • 1
  • Jennifer E. McDowell
    • 1
  • Casey S. Gilmore
    • 1
  • Brett A. Clementz
    • 1
  1. 1.Department of PsychologyUniversity of GeorgiaAthensUSA

Personalised recommendations