Skip to main content
Log in

Hausdorff distance between convex semialgebraic sets

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we proposed an approach for computing the Hausdorff distance between convex semialgebraic sets. We exploit the KKT conditions to rewrite the Hausdorff distance as polynomial maximization problems under some assumptions, in which polynomial and rational expressions of Lagrange multipliers are used. Then, polynomial maximization problems are solved by Lasserre’s hierarchy of semi-definite relaxations. Finally, some numerical examples are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, H., Behrends, B., Blömer, J.: Approximate matching of polygonal shapes. Ann. Math. Artif. Intell. 13(3), 251–265 (1995)

    Article  MathSciNet  Google Scholar 

  2. Atallah, M.: A linear time algorithm for the Hausdorff distance between convex polygons. Inf. Process. Lett. 17(4), 207–209 (1983)

    Article  MathSciNet  Google Scholar 

  3. Babalola, K., Patenaude, B., Aljabar, P., Schnabel, J., Kennedy, D., Crum, W., Smith, S., Cootes, T., Jenkinson, M., Rueckert, D.: Comparison and evaluation of segmentation techniques for subcorticalstructures in brain MRI. In: International conference on medical image computing and computer-assisted intervention, pp 409–416, Springer (2008)

  4. Bartoň, M., Hanniel, I., Elber, G., Kim, M.: Precise Hausdorff distance computation between polygonal meshes. Comput. Aided Geom. Des. 27(8), 580–591 (2010)

    Article  MathSciNet  Google Scholar 

  5. Belogay, E., Cabrelli, C., Molter, U., Shonkwiler, R.: Calculating the Hausdorff distance between curves. Inf. Process. Lett. 64(1), 17–22 (1997)

    Article  MathSciNet  Google Scholar 

  6. Besl, P., McKay, N.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, volume 1611, pages 586–606, International Society for Optics and Photonics, (1992)

  7. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 89(2–3), 114–141 (2003)

    Article  Google Scholar 

  8. Curto, R., Fialkow, L.: Truncated K-moment problems in several variables. J. Oper. Theory 54(1), 189–226 (2005)

    MathSciNet  Google Scholar 

  9. Du, D., Pardalos, P.: Minimax and Applications. Springer (1995)

    Book  Google Scholar 

  10. Dubuisson, M., Jain, A.: A modified Hausdorff distance for object matching. In: Proceedings of 12th international conference on pattern recognition, pp 566–568, IEEE, (1994)

  11. Elber, G., Grandine, T.: Hausdorff and minimal distances between parametric freeforms in \(R^2\) and \(R^3\). In: International conference on geometric modeling and processing, pp 191–204, Springer (2008)

  12. Fialkow, L., Nie, J.: The truncated moment problem via homogenization and flat extensions. J. Funct. Anal. 263(6), 1682–1700 (2012)

    Article  MathSciNet  Google Scholar 

  13. Guthe, M., Borodin, P., Klein, R.: Fast and accurate Hausdorff distance calculation between meshes. J. WSCG 13(2), 41–48 (2015)

    Google Scholar 

  14. Helton, J., Nie, J.: A semidefinite approach for truncated K-moment problems. Found. Comput. Math. 12(6), 851–881 (2012)

    Article  MathSciNet  Google Scholar 

  15. Henrion, D., Lasserre, J: Detecting global optimality and extracting solutions in GloptiPoly. In: Positive polynomials in control, Springer, pp 293–310 (2005)

  16. Henrion, D., Lasserre, J., Löfberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24(4–5), 761–779 (2009)

    Article  MathSciNet  Google Scholar 

  17. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993)

    Article  Google Scholar 

  18. Jesorsky, O., Kirchberg, K., Frischholz, R.: Robust face detection using the Hausdorff distance. In: Audio- and video-based biometric person authentication, pp 90–95, Springer (2001)

  19. Khotanlou, H., Colliot, O., Atif, J., Bloch, I.: 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst. 160(10), 1457–1473 (2009)

    Article  MathSciNet  Google Scholar 

  20. Lasserre, J.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  Google Scholar 

  21. Lasserre, J.: Moments, Positive Polynomials and their Applications. World Scientific (2010)

    Google Scholar 

  22. Lasserre, J.: On representations of the feasible set in convex optimization. Optim. Lett. 4(1), 1–5 (2010)

    Article  MathSciNet  Google Scholar 

  23. Laraki, R., Lasserre, J.: Semidefinite programming for min-max problems and games. Math. Program. 131(1), 305–332 (2012)

    Article  MathSciNet  Google Scholar 

  24. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Emerging applications of algebraic geometry, pp 157–270, Springer (2009)

  25. Löfberg, J.: YALMIP: A toolbox for modeling and optimization in matlab. In: 2004 IEEE international conference on robotics and automation, pages 284–289. IEEE (2004)

  26. Marošević, T.: The Hausdorff distance between some sets of points. Math. Commun. 23(2), 247–57 (2018)

    MathSciNet  Google Scholar 

  27. Morain-Nicolier, F., Lebonvallet, S., Baudrier, E., Ruan, S.: Hausdorff distance based 3D quantification of brain tumor evolution from MRI images. In: 2007 29th Annual international conference of the IEEE engineering in medicine and biology society, pp 5597–5600, IEEE (2007)

  28. Nie, J.: Certifying convergence of Lasserre’s hierarchy via flat truncation. Math. Program. 142(1), 485–510 (2013)

    Article  MathSciNet  Google Scholar 

  29. Nie, J.: Tight relaxations for polynomial optimization and Lagrange multiplier expressions. Math. Program. 178(1), 1–37 (2018)

    MathSciNet  Google Scholar 

  30. Nie, J., Wang, L., Ye, J., Zhong, S.: A lagrange multiplier expression method for bilevel polynomial optimization. SIAM J. Optim. 31(3), 2368–2395 (2021)

    Article  MathSciNet  Google Scholar 

  31. Ricceri, B., Simons, S.: Minimax Theory and Applications. Springer (1998)

    Book  Google Scholar 

  32. Rote, G.: Computing the minimum Hausdorff distance between two point sets on a line under translation. Inf. Process. Lett. 38(3), 123–127 (1991)

    Article  MathSciNet  Google Scholar 

  33. Rucklidge, W.: Efficient Visual Recognition using the Hausdorff Distance. Springer (1996)

    Book  Google Scholar 

  34. Schutze, O., Esquivel, X., Lara, A., Coello, C.: Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)

    Article  Google Scholar 

  35. Sturm, J.: Using sedumi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(1–4), 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  36. Taha, A., Hanbury, A.: An efficient algorithm for calculating the exact Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 37(11), 2153–2163 (2015)

    Article  PubMed  Google Scholar 

  37. Tutuncu, R., Toh, K., Todd, M.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Programm. Ser. B 95(1), 189–217 (2003)

    Article  MathSciNet  Google Scholar 

  38. Yu, C., Yu, J.: On structural stability and robustness to bounded rationality. Nonlinear Anal. Theory Methods Appl. 65(3), 583–592 (2006)

    Article  MathSciNet  Google Scholar 

  39. Yu, J., Yang, Z., Wang, N.: Further results on structural stability and robustness to bounded rationality. J. Math. Econ. 67, 49–53 (2016)

    Article  MathSciNet  Google Scholar 

  40. Zhao, C., Shi, W., Deng, Y.: A new Hausdorff distance for image matching. Pattern Recogn. Lett. 26(5), 581–586 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and anonymous referees for the valuable advice. Guangming Zhou was supported by Natural Science Foundation of China (12071399) and Key Projects of Hunan Provincial Education Department (18A048). Wenjie Zhao was supported by Postgraduate Scientific Research Innovation Project of Hunan Province (CX20210605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Zhou, G. Hausdorff distance between convex semialgebraic sets. J Glob Optim 88, 409–429 (2024). https://doi.org/10.1007/s10898-023-01313-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-023-01313-9

Keywords

Navigation