Skip to main content
Log in

Reference-point-based branch and bound algorithm for multiobjective optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, a nonconvex multiobjective optimization problem with Lipschitz objective functions is considered. A branch and bound algorithm that incorporates the decision maker’s preference information is proposed for this problem. In the proposed algorithm, a new discarding test is designed to check whether a box contains preferred solutions according to the preference information expressed by means of reference points. In this way, the proposed algorithm is able to gradually guide the search towards the region of interest on the Pareto fronts during the solution process. We prove that the proposed algorithm obtains \(\varepsilon \)-efficient solutions distributed among the regions of interest with respect to the given reference points. Moreover, lower bound on the total finite number of required iterations for predefined precision is also provided. Finally, the algorithm is illustrated with a number of test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agrawal, R.B., Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9(3), 115–148 (1994)

    MathSciNet  Google Scholar 

  2. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: \(\alpha \)BB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)

    Article  MathSciNet  Google Scholar 

  3. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    Google Scholar 

  4. Deb, K., Sundar, J.: Reference point based multi-objective optimization using evolutionary algorithms. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation 635–642 (2006)

  5. Ehrgott, M., Shao, L.Z., Schöbel, A.: An approximation algorithm for convex multi-objective programming problems. J. Glob. Optim. 50(3), 397–416 (2011)

    Article  MathSciNet  Google Scholar 

  6. Eichfelder, G., Kirst, P., Meng, L., Stein, O.: A general branch-and-bound framework for continuous global multiobjective optimization. J. Glob. Optim. 80(1), 195–227 (2021)

    Article  MathSciNet  Google Scholar 

  7. Fernández, J., Tóth, B.: Obtaining the efficient set of nonlinear biobjective optimization problems via interval branch-and-bound methods. Comput. Optim. Appl. 42(3), 393–419 (2009)

    Article  MathSciNet  Google Scholar 

  8. Hua, Y., Liu, Q., Hao, K., Jin, Y.: A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts. IEEE/CAA J. Autom. Sinica. 8(2), 303–318 (2021)

    Article  MathSciNet  Google Scholar 

  9. Hwang, C.L., Masud, A.S.M.: Multiple Objective Decision Making-Methods and Applications: A State-of-the-art Survey. Springer (2012)

    Google Scholar 

  10. Jaimes, A.L., Coello, C.A.C.: Multi-objective evolutionary algorithms: a review of the state-of-the-art and some of their applications in chemical engineering. MULTI-OBJECTIVE OPTIMIZATION: techniques and application in chemical engineering, Rangaiah G P, Singapore: World Scientific, 63–92 (2017)

  11. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–622 (2013)

    Article  Google Scholar 

  12. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

    Article  MathSciNet  Google Scholar 

  13. Kutateladze, S.S.: Convex \(\varepsilon \)-programming (1979)

  14. Miettinen, K.: Nonlinear Multiobjective Optimization. Springer (2012)

    Google Scholar 

  15. Molina, J., Santana, L.V., Hernández-Díaz, A.G., Coello, C.A., Caballero, R.: g-Dominance: reference point based dominance for multiobjective metaheuristics. Eur. J. Oper. Res. 197(2), 685–692 (2009)

    Article  Google Scholar 

  16. Neumaier, A., Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press (1990)

    Google Scholar 

  17. Niebling, J., Eichfelder, G.: A branch-and-bound-based algorithm for nonconvex multiobjective optimization. SIAM J. Optim. 29(1), 794–821 (2019)

    Article  MathSciNet  Google Scholar 

  18. Paulavičius, R., Žilinskas, J.: Analysis of different norms and corresponding Lipschitz constants for global optimization. Technol. Econ. Dev. Econ. 12(4), 301–306 (2006)

    Article  Google Scholar 

  19. Reklaitis, G.V., Ravindran, A., Ragsdell, K.M.: Engineering Optimization Methods and Applications. Wiley (1983)

    Google Scholar 

  20. Ruiz, A.B., Saborido, R., Luque, M.: A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm. J. Glob. Optim. 62(1), 101–129 (2015)

    Article  MathSciNet  Google Scholar 

  21. Said, L.B., Bechikh, S., Ghédira, K.: The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making. IEEE Trans. Evol. Comput. 14(5), 801–818 (2010)

    Article  Google Scholar 

  22. Tanabe, R., Ishibuchi, H.: An easy-to-use real-world multi-objective optimization problem suite. Appl. Soft Comput. 89, 106078 (2020)

    Article  Google Scholar 

  23. Tian, Y., Si, L.C., Zhang, X.Y., Cheng, R., He, C., Tan, K.C., Jin, Y.C.: Evolutionary large-scale multi-objective optimization: a survey. ACM Comput. Surv. 54(8), 1–34 (2021)

    Google Scholar 

  24. Viennet, R., Fonteix, C., Marc, I.: Multicriteria optimization using a genetic algorithm for determining a Pareto set. Int. J. Syst. Sci. 27(2), 255–260 (1996)

    Article  Google Scholar 

  25. Wierzbicki, A.P.: The Use of Reference Objectives in Multiobjective Optimization. Springer, Berlin, Heidelberg (1980)

    Book  Google Scholar 

  26. Wu, W.T., Yang, X.M.: The hybridization of branch and bound with metaheuristics for nonconvex multiobjective optimization. Preprint at arXiv:2212.04624 (2022)

  27. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  28. Žilinskas, A., Gimbutienė, G.: On one-step worst-case optimal trisection in univariate bi-objective Lipschitz optimization. Commun. Nonlinear Sci. Numer. Simul. 35, 123–136 (2016)

    Article  MathSciNet  Google Scholar 

  29. Žilinskas, A., Žilinskas, J.: Adaptation of a one-step worst-case optimal univariate algorithm of bi-objective Lipschitz optimization to multidimensional problems. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 89–98 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Major Program of National Natural Science Foundation of China (Nos. 11991020, 11991024), the General Program of National Natural Science Foundation of China (No. 11971084), the Team Project of Innovation Leading Talent in Chongqing (No. CQYC20210309536) and the NSFC-RGC (Hong Kong) Joint Research Program (No. 12261160365).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-min Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Wt., Yang, Xm. Reference-point-based branch and bound algorithm for multiobjective optimization. J Glob Optim 88, 927–945 (2024). https://doi.org/10.1007/s10898-023-01306-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-023-01306-8

Keywords

Navigation