Skip to main content
Log in

Approximate Douglas–Rachford algorithm for two-sets convex feasibility problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we propose a new algorithm combining the Douglas–Rachford (DR) algorithm and the Frank–Wolfe algorithm, also known as the conditional gradient (CondG) method, for solving the classic convex feasibility problem. Within the algorithm, which will be named Approximate Douglas–Rachford (ApDR) algorithm, the CondG method is used as a subroutine to compute feasible inexact projections on the sets under consideration, and the ApDR iteration is defined based on the DR iteration. The ApDR algorithm generates two sequences, the main sequence, based on the DR iteration, and its corresponding shadow sequence. When the intersection of the feasible sets is nonempty, the main sequence converges to a fixed point of the usual DR operator, and the shadow sequence converges to the solution set. We provide some numerical experiments to illustrate the behaviour of the sequences produced by the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aragón Artacho, F.J., Borwein, J.M., Tam, M.K.: Douglas-Rachford feasibility methods for matrix completion problems. ANZIAM J. 55(4), 299–326 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artacho, F.J.A., Campoy, R., Tam, M.K.: The Douglas-Rachford algorithm for convex and nonconvex feasibility problems. Math. Methods Oper. Res. 91(2), 201–240 (2019)

    Article  MATH  Google Scholar 

  3. Bauschke, H.H., Combettes, P.L.: Convex analysis and monotone operator theory in Hilbert spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York, 2011. With a foreword by Hédy Attouch

  4. Beck, A., Teboulle, M.: A conditional gradient method with linear rate of convergence for solving convex linear systems. Math. Methods Oper. Res. 59(2), 235–247 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carderera, A., Pokutta, S.: Second-order Conditional Gradient Sliding. arXiv e-prints, page arXiv:2002.08907 (2020)

  6. Combettes, P.L.: The convex feasibility problem in image recovery. In: Hawkes, P. (ed.) Advances in imaging and electron physics, vol. 95, pp. 155–270. Academic Press, New York (1996)

    Google Scholar 

  7. Combettes, P.L.: Hard-constrained inconsistent signal feasibility problems. EEE Trans. Signal Process. 47, 2460–2468 (1999)

    Article  MATH  Google Scholar 

  8. de Oliveira, F.R., Ferreira, O.P., Silva, G.N.: Newton’s method with feasible inexact projections for solving constrained generalized equations. Comput. Optim. Appl. 72(1), 159–177 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Díaz Millán, R., Ferreira, O.P., Prudente, L.F.: Alternating conditional gradient method for convex feasibility problems. Comput. Optim. Appl. 80, 245–269 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Díaz Millán, R., Lindstrom, S.B., Roshchina, V.: Comparing averaged relaxed cutters and projection methods: theory and examples. In From analysis to visualization, vol. 313 of Springer Proc. Math. Stat., pages 75–98. Springer, Cham (2020)

  11. Douglas, J., Jr., Rachford, H.H., Jr.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dunn, J.C.: Convergence rates for conditional gradient sequences generated by implicit step length rules. SIAM J. Control Optim. 18(5), 473–487 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eckstein, J., Yao, W.: Relative-error approximate versions of Douglas-Rachford splitting and special cases of the ADMM. Math. Program. Ser. A 170, 417–444 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Nav. Res. Log. 3, 95–110 (1956)

    Article  MathSciNet  Google Scholar 

  15. Freund, R.M., Grigas, P.: New analysis and results for the Frank-Wolfe method. Math. Program. 155(1–2, Ser. A), 199–230 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12(2), 436–460 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Garber, D., Hazan, E.: Faster rates for the frank-wolfe method over strongly-convex sets. In: Proceedings of the 32Nd international conference on international conference on machine learning - Vol. 37, pp. 541–549 (2015)

  18. Gonçalves, M.L.N., Melo, J.G.: A Newton conditional gradient method for constrained nonlinear systems. J. Comput. Appl. Math. 311, 473–483 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gonçalves, M.L.N., Melo, J.G., Monteiro, R.D.C.: Projection-free accelerated method for convex optimization. Optim. Methods Softw. 37(1), 214–240 (2022). https://doi.org/10.1080/10556788.2020.1734806

  20. Hesse, R., Luke, D.R., Neumann, P.: Alternating projections and Douglas-Rachford for sparse affine feasibility. IEEE Trans. Signal Process. 62(18), 4868–4881 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jaggi, M.: Revisiting frank-wolfe: Projection-free sparse convex optimization. Proceedings of the 30th international conference on machine learning, Vol. 28, ICML’13:I–427–I–435 (2013)

  22. Lan, G., Zhou, Y.: Conditional gradient sliding for convex optimization. SIAM J. Optim. 26(2), 1379–1409 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Levitin, E.S., Poljak, B.T.: Minimization methods in the presence of constraints. USSR Comput. Math. Math. Phys. 6, 1–50 (1966)

    Article  MathSciNet  Google Scholar 

  24. Nocedal, J., Wright, S.J.: Numerical optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2006)

    Google Scholar 

  25. Marques Alves, M., Geremia, Marina: Iteration complexity of an inexact Douglas-Rachford method and of a Douglas-Rachford-Tseng’s F-B four-operator splitting method for solving monotone inclusions. Numer. Algorithms 82, 263–295 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Marques Alves, M., Eckstein, Jonathan, Geremia, Marina, Melo, Jefferson G.: Relative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithms. Comput. Optim. Appl. 75, 389–422 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jarrett Revels https://github.com/JuliaCI/BenchmarkTools.jl

  28. Rothvoss, T.: The matching polytope has exponential extension complexity. J. ACM 64(6), Art. 41, 19 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Díaz Millán.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

R. Díaz Millán: This author was supported by the Australian Research Council (ARC), Solving hard Chebyshev approximation problems through nonsmooth analysis (Discovery Project DP180100602).

O. P. Ferreira: This authors was supported in part by CNPq grant 304666/2021-1.

J. Ugon: This author was supported by the Australian Research Council (ARC), Solving hard Chebyshev approximation problems through nonsmooth analysis (Discovery Project DP180100602).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz Millán, R., Ferreira, O.P. & Ugon, J. Approximate Douglas–Rachford algorithm for two-sets convex feasibility problems. J Glob Optim 86, 621–636 (2023). https://doi.org/10.1007/s10898-022-01264-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01264-7

Keywords

Mathematics Subject Classification

Navigation