Skip to main content
Log in

An active set strategy to address the ill-conditioning of smoothing methods for solving finite linear minimax problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, an active set strategy is presented to address the ill-conditioning of smoothing methods for solving finite linear minimax problems. Based on the first order optimality conditions, a concept of the strongly active set composed of a part of active indexes is introduced. In the active set strategy, a strongly active set is obtained by solving a linear system or a linear programming problem, then an optimal solution with its active set and Lagrange multipliers is computed by an iterative process. A hybrid algorithm combining a smoothing algorithm and the active set strategy is proposed for solving finite linear minimax problems, in which an approximate solution is obtained by the smoothing algorithm, then an optimal solution is computed by the active set strategy. The convergences of the active set strategy and the hybrid algorithm are established for general finite linear minimax problems. Preliminary numerical experiments show that the active set strategy and the hybrid algorithm are effective and robust, and the active set strategy can effectively address the ill-conditioning of smoothing methods for solving general finite linear minimax problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Subaihi, I., Watson, G.A.: Fitting parametric curves and surfaces by \(l_\infty \) distance regression. BIT Numer. Math. 45(3), 443–461 (2005)

    Article  MATH  Google Scholar 

  2. Applegate, D., Cook, W., Dash, S., Rohe, A.: Solution of a min-max vehicle routing problem. INFORMS J. Comput. 14(2), 132–143 (2002)

    Article  MATH  Google Scholar 

  3. Banichuk, N.V.: Minimax approach to structural optimization problems. J. Optim. Theory Appl. 20(1), 111–127 (1976)

    Article  Google Scholar 

  4. Demyanov, V.F., Malozemov, V.N.: Introduction to Minimax. Wiley, New York (1974)

    Google Scholar 

  5. Du, D.Z., Pardalos, P.M.: Minimax and Applications. Kluwer Academic, Dordrecht (1995)

    Book  MATH  Google Scholar 

  6. Frangioni, A.: Generalized bundle methods. SIAM J. Optim. 113(1), 117–156 (2002)

    Article  MATH  Google Scholar 

  7. Gaudioso, M., Monaco, M.F.: A bundle type approach to the unconstrained minimization of convex nonsmooth functions. Math. Program. 23(1), 216–226 (1982)

    Article  MATH  Google Scholar 

  8. Hansen, P., Peeters, D., Richard, D., Thisse, J.F.: The minisum and minimax location problems revisited. Oper. Res. 33(6), 1251–1265 (1985)

    Article  MATH  Google Scholar 

  9. Holmaker, K.: A minimax optimal-control problem. J. Optim. Theory Appl. 28(3), 391–410 (1979)

    Article  MATH  Google Scholar 

  10. Li, X.S.: An entropy-based aggregate method for minimax optimization. Eng. Optim. 18(4), 277–285 (1992)

    Article  Google Scholar 

  11. Lukšan, L., Vlček, J.: Test problems for nonsmooth unconstrained and linearly constrained optimization. Technical report V-798, ICS AS CR, Prague (2000)

  12. Lukšan, L., Vlček, J.: Primal interior-point method for large sparse minimax optimization. Technical report V-941, ICS AS CR, Prague (2005)

  13. Mayne, D.Q., Polak, E.: Nondifferentiable optimization via adaptive smoothing. J. Optim. Theory Appl. 43(4), 601–614 (1984)

    Article  MATH  Google Scholar 

  14. Murray, W., Overton, M.L.: A projected Lagrangian algorithm for nonlinear minimax optimization. SIAM J. Sci. Statist. Comput. 1(3), 345–370 (1980)

    Article  MATH  Google Scholar 

  15. Obasanjo, E., Tzallas-Regas, G., Rustem, B.: An interior-point algorithm for nonlinear minimax problems. J. Optim. Theory Appl. 144(2), 291–318 (2010)

    Article  MATH  Google Scholar 

  16. Pang, J.S., Yu, C.S.: A min-max resource-allocation problem with substitutions. Eur. J. Oper. Res. 41(2), 218–223 (1989)

    Article  MATH  Google Scholar 

  17. Pillo, G.D., Grippo, L., Lucidi, S.: A smooth method for the finite minimax problem. Math. Program. 60(1–3), 187–214 (1993)

    Article  MATH  Google Scholar 

  18. Polak, E.: On the mathematical foundations of nondifferentiable optimization in engineering design. SIAM Rev. 29(1), 21–89 (1987)

    Article  Google Scholar 

  19. Polak, E., Royset, J.O., Womersley, R.S.: Algorithms with adaptive smoothing for finite minimax problems. J. Optim. Theory Appl. 119(3), 459–484 (2003)

    Article  MATH  Google Scholar 

  20. Polak, E., Womersley, R.S., Yin, H.X.: An algorithm based on active sets and smoothing for discretized semi-infinite minimax problems. J. Optim. Theory Appl. 138(2), 311–328 (2008)

    Article  MATH  Google Scholar 

  21. Polyak, R.A.: Smooth optimization methods for minimax problems. SIAM J. Control. Optim. 26(6), 1274–1286 (1988)

    Article  MATH  Google Scholar 

  22. Shor, N.Z.: Minimization Methods for Non-differentiable Functions. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  23. Sturm, J.F., Zhang, S.: A dual and interior-point approach to solve convex min-max problems. In: Du, D.Z., Pardalos, P.M. (eds.) Minimax and Applications, pp. 69–78. Springer, Boston, MA (1995)

    Chapter  MATH  Google Scholar 

  24. Womersley, R.S., Fletcher, R.: An algorithm for composite nonsmooth optimization problems. J. Optim. Theory Appl. 48(3), 493–523 (1986)

    Article  MATH  Google Scholar 

  25. Xiao, Y., Yu, B.: A truncated aggregate smoothing Newton method for minimax problems. Appl. Math. Comput. 216(6), 1868–1879 (2010)

    MATH  Google Scholar 

  26. Xu, S.: Smoothing method for minimax problems. Comput. Optim. Appl. 20(3), 267–279 (2001)

    Article  MATH  Google Scholar 

  27. Ye, F., Liu, H.W., Zhou, S.S., Liu, S.Y.: A smoothing trust-region Newton-CG method for minimax problem. Appl. Math. Comput. 199(2), 581–589 (2008)

    MATH  Google Scholar 

  28. Zang, I.: A smoothing-out technique for min-max optimization. Math. Program. 19(1), 61–77 (1980)

    Article  MATH  Google Scholar 

  29. Zhou, J.L., Tits, A.L.: An SQP algorithm for finely discretized continuous minimax problems and other minimax problems with many objective functions. SIAM J. Optim. 6(2), 461–487 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyong Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was supported by the National Natural Science Foundation of China 11701350.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Dai, X. An active set strategy to address the ill-conditioning of smoothing methods for solving finite linear minimax problems. J Glob Optim 85, 421–439 (2023). https://doi.org/10.1007/s10898-022-01217-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01217-0

Keywords

Navigation