Skip to main content
Log in

Inverse max+sum spanning tree problem under weighted \(l_{\infty }\) norm by modifying max-weight vector

Journal of Global Optimization Aims and scope Submit manuscript


The max+sum spanning tree (MSST) problem is to determine a spanning tree T whose combined weight \(\max _{e\in T}w(e)+\sum _{e\in T}c(e)\) is minimum for a given edge-weighted undirected network G(VEcw). This problem can be solved within \(O(m \log n)\) time, where m and n are the numbers of edges and nodes, respectively. An inverse MSST problem (IMSST) aims to determine a new weight vector \(\bar{w}\) so that a given \(T^0\) becomes an optimal MSST of the new network \(G(V,E,c,\bar{w})\). The IMSST problem under weighted \(l_\infty \) norm is to minimize the modification cost \(\max _{e\in E} q(e)|\bar{w}(e)-w(e)|\), where q(e) is a cost modifying the weight w(e). We first provide some optimality conditions of the problem. Then we propose a strongly polynomial time algorithm in \(O(m^2\log n)\) time based on a binary search and a greedy method. There are O(m) iterations and we solve an MSST problem under a new weight in each iteration. Finally, we perform some numerical experiments to show the efficiency of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Fig. 1


  1. Ahuja, R.K., Orlin, J.B.: A faster algorithm for the inverse spanning tree problem. J. Algorithm 34, 177–193 (2000)

    Article  MathSciNet  Google Scholar 

  2. Cai, M.-C., Duin, C.W., Yang, X., Zhang, J.: The partial inverse minimum spanning tree problem when weight increasing is forbidden. Eur. J. Oper. Res. 188, 348–353 (2008)

    Article  Google Scholar 

  3. Duin, C.W., Volgenant, A.: Some inverse optimization problems under the Hamming distance. Eur. J. Oper. Res. 170, 887–899 (2006)

    Article  MathSciNet  Google Scholar 

  4. Guan, X.C., He, X.Y., Pardalos, P.M., Zhang, B.W.: Inverse max + sum spanning tree problem under Hamming distance by modifying the sum-cost vector. J. Glob. Optim. 69, 911–925 (2017)

    Article  Google Scholar 

  5. Guan, X.C., Pardalos, P.M., Zuo, X.: Inverse max + sum spanning tree problem by modifying the sum-cost vector under weighted \(l_{\infty }\) Norm. J. Glob. Optim. 61(1), 165–182 (2015)

    Article  MathSciNet  Google Scholar 

  6. Guan, X.C., Pardalos, P.M., Zhang, B.W.: Inverse max+sum spanning tree problem under weighted \(l_1\) norm by modifying the sum-cost vector. Optim. Lett. 5, 1–13 (2017)

    MATH  Google Scholar 

  7. Guan, X.C., Zhang, B.W.: Inverse 1-median problem on trees under weighted Hamming distance. J. Glob. Optim. 54(1), 75–82 (2012)

    Article  MathSciNet  Google Scholar 

  8. Guan, X.C., Zhang, J.Z.: Inverse constrained bottleneck problems under weighted \(l_{\infty }\) norm. Comput. Oper. Res. 34, 3243–3254 (2007)

    Article  MathSciNet  Google Scholar 

  9. Heuburger, C.: Inverse optimization, a survey on problems, methods, and results. J. Comb. Optim. 8(3), 329–361 (2004)

    Article  MathSciNet  Google Scholar 

  10. Hochbaum, D.S.: Efficient algorithms for the inverse spanning tree problem. Oper. Res. 51(5), 785–797 (2003)

    Article  MathSciNet  Google Scholar 

  11. He, Y., Zhang, B., Yao, E.: Weighted inverse minimum spanning tree problems under Hamming distance. J. Comb. Optim. 9, 91–100 (2005)

    Article  MathSciNet  Google Scholar 

  12. Lai, T., Orlin, J.: The Complexity of Preprocessing. Research Report of Sloan School of Management. MIT, Cambridge (2003)

    Google Scholar 

  13. Li, X., Shu, X., Huang, H., Bai, J.: Capacitated partial inverse maximum spanning tree under the weighted Hamming distance. J. Comb. Optim. 38(4), 1005–1018 (2019)

    Article  MathSciNet  Google Scholar 

  14. Liu, L.C., Wang, Q.: Constrained inverse min-max spanning tree problems under the weighted Hamming distance. J. Glob. Optim. 43, 83–95 (2009)

    Article  MathSciNet  Google Scholar 

  15. Li, X., Zhang, Z., Du, D.-Z.: Partial inverse maximum spanning tree in which weight can only be decreased under \(l_p\) norm. J. Glob. Optim. 30, 677–685 (2018)

    Article  Google Scholar 

  16. Li, S., Zhang, Z., Lai, H.-J.: Algorithms for constraint partial inverse matroid problem with weight increase forbidden. Theor. Comput. Sci. 640, 119–124 (2016)

    Article  MathSciNet  Google Scholar 

  17. Li, X., Zhang, Z., Yang, R., Zhang, H., Du, D.-Z.: Approximation algorithms for capacitated partial inverse maximum spanning tree problem. J. Glob. Optim. 77(2), 319–340 (2020)

    Article  MathSciNet  Google Scholar 

  18. Minoux, M.: Solving combinatorial problemswith combined minmax-minsum objective and applications. Math. Program. 45, 361–371 (1989)

    Article  Google Scholar 

  19. Punnen, A.P.: On combined minmax-minsum optimization. Comput. Oper. Res. 21(6), 707–716 (1994)

    Article  Google Scholar 

  20. Punnen, A.P., Nair, K.P.K.: An \(O(m\log n)\) algorithm for the max + sum spanning tree problem. Eur. J. Oper. Res. 89, 423–426 (1996)

    Article  Google Scholar 

  21. Sokkalingam, P.T., Ahuja, R.K., Orlin, J.B.: Solving inverse spanning tree problems through network flow techniques. Oper. Res. 47(2), 291–298 (1999)

    Article  MathSciNet  Google Scholar 

  22. Tayyebi, J., Sepasian, A.R.: Partial inverse min-max spanning tree problem. J. Comb. Optim. 40(4), 1075–1091 (2020)

    Article  MathSciNet  Google Scholar 

  23. Yang, X.G., Zhang, J.Z.: Some inverse min-max network problems under weighted \(l_1\) and \(l_{\infty }\) norms with bound constraints on changes. J. Comb. Optim. 13, 123–135 (2007)

    Article  MathSciNet  Google Scholar 

  24. Zhang, J.Z., Liu, Z.: A general model of some inverse combinatorial optimization problems and its solution method under \(l_{\infty }\) norm. J. Comb. Optim. 6, 207–227 (2002)

    Article  MathSciNet  Google Scholar 

  25. Zhang, B., Zhang, J., He, Y.: Constrained inverse minimum spanning tree problems under the bottlenecktype Hamming distance. J. Glob. Optim. 34(3), 467–474 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xiucui Guan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research is supported by National Natural Science Foundation of China (11471073).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Guan, X., Zhang, Q. et al. Inverse max+sum spanning tree problem under weighted \(l_{\infty }\) norm by modifying max-weight vector. J Glob Optim 84, 715–738 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: