Arrow, K.J., Debreu, G.: Existence of an equilibrium for a comprtitive economy. Econometrica 22, 265–290 (1954)
MathSciNet
Article
Google Scholar
Avriel, M., Diewert, W.E., Schaible, S., Zang, I.: Generalized Concavity. Plenum Press, New York (1998)
MATH
Google Scholar
Alonso, M., Rodríguez-Marín, L.: Set-relations and optimality conditions in set-valued mappings. Nonlinear Anal. 63, 1167–1179 (2005)
MathSciNet
Article
Google Scholar
Anh, L.Q., Duoc, P.T., Tam, T.N.: On the stability of approximate solutions to set-valued equilibrium problems. Optimization 69, 1583–1599 (2019)
MathSciNet
Article
Google Scholar
Anh, L.Q., Duy, T.Q., Hien, D.V., Kuroiwa, D., Petrot, N.: Convergence of solution to set optimization problems with the set less order relation. J. Optim. Theory Appl. 185, 416–432 (2020)
MathSciNet
Article
Google Scholar
Berge, C.: Topological Spaces. Oliver and Boyd, London (1963)
MATH
Google Scholar
Bonnisseau, J.M., Cornet, B.: Existence of marginal cost pricing equilibria in an economy with several nonconvex firms. Econometrica 58, 661–682 (1990)
MathSciNet
Article
Google Scholar
Beer, G.: Topologies on Closed and Closed Convex Sets. Springer, Berlin (1993)
Book
Google Scholar
Chicco, M., Mignanego, F., Pusillo, L., Tijs, S.: Vector optimization problems via improvement sets. J. Optim. Theory Appl. 150, 516–529 (2011)
MathSciNet
Article
Google Scholar
Dhigra, M., Lalitha, C.S.: Set optimization using improvement sets. Yugosl J. Oper. Res. 2, 153–167 (2017)
MathSciNet
Article
Google Scholar
Fang, Z.M., Li, S.J.: Painlevé-Kuratowski convergence of the solution sets to perturbed generalized systems. Acta. Math. Appl. Sin-E. 28, 361–370 (2012)
Article
Google Scholar
Gale, D.: The law of supply and demand. Math. Scand. 3, 155–169 (1955)
MathSciNet
Article
Google Scholar
Göpfert, A., Riahi, H., Tammer, C., Zalinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)
MATH
Google Scholar
Gutiérrez, C., Jiménez, B., Novo, V.: Improvement sets and vector optimization. Eur. J. Oper. Res. 223, 304–311 (2012)
MathSciNet
Article
Google Scholar
Han, Y., Huang, N.J.: Existence and connectedness of solutions for generalized vector quasi-equilibrium problems. J. Optim. Theory Appl. 179, 65–85 (2016)
MathSciNet
Article
Google Scholar
Han, Y., Huang, N.J.: Well-posedness and stability of solutions for set optimization problems. Optimization 66, 17–33 (2017)
MathSciNet
Article
Google Scholar
Han, Y., Zhang, K., Huang, N.J.: The stability and extended well-posedness of the solution sets for set optimization problems via the Painlevé-Kuratowski convergence. Math. Meth. Oper. Res. 91, 175–196 (2020)
Article
Google Scholar
Han, Y.: Painlevé-Kuratowski convergences of the solution sets for set optimization problems with cone-quasiconnectedness. Optimization (2020). https://doi.org/10.1080/02331934.2020.1857756
Article
Google Scholar
Jeyakumar, V.: A generalization of a minimax theorem of Fan via a theorem of the alternative. J. Optim. Theory Appl. 48, 525–533 (1986)
MathSciNet
Article
Google Scholar
Kuroiwa, D.: Existence theorems of set optimization with set-valued maps. J. Inf. Optim. Sci. 24, 73–84 (2003)
MathSciNet
MATH
Google Scholar
Khoshkhabar-amiranloo, S.: Stability of minimal solutions to parametric set optimization problem. Appl. Anal. 97, 2510–2522 (2018)
MathSciNet
Article
Google Scholar
Lalitha, C.S., Chatterjee, P.: Stability and scalarization of weak efficient, efficient and Henig proper efficient sets using generalized quasiconvexities. J. Optim. Theory Appl. 155, 941–961 (2012)
MathSciNet
Article
Google Scholar
Lalitha, C.S., Chatterjee, P.: Stability and scalarization in vector optimization using improvement sets. J. Optim. Theory Appl. 166, 825–843 (2015)
MathSciNet
Article
Google Scholar
Li, X.B., Lin, Z., Peng, Z.Y.: Convergence for vector optimization problems with variable ordering structure. Optimization 65, 1615–1627 (2016)
MathSciNet
Article
Google Scholar
Mao, J.Y., Wang, S.H., Han, Y.: The stability of the solution sets for set optimization problems via improvement sets. Optimization 68, 2171–2193 (2019)
MathSciNet
Article
Google Scholar
Peng, Z.Y., Peng, J.W., Long, X.J., Yao, J.C.: On the stability of solutions for semi-infinite vector optimization problems. J. Global Optim. 70, 55–69 (2018)
MathSciNet
Article
Google Scholar
Peng, Z.Y., Li, X.B., Long, X.J., Fan, X.D.: Painlevé-Kuratowski stability of approximate efficient solutions for perturbed semi-infinite vector optimization problem. Optim. Lett. 12, 1339–1356 (2018)
MathSciNet
Article
Google Scholar
Peng, Z.Y., Wang, Z.Y., Yang, X.M.: Connectedness of solution sets for weak generalized symmetric Ky Fan inequality problems via addition-invariant sets. J. Optim. Theory Appl. 185, 188–206 (2020)
MathSciNet
Article
Google Scholar
Peng, Z.Y., Wang, J.J., Long, X.J., Liu, F.P.: Painlevé-Kuratowski convergence of solutions for perturbed symmetric set-valued quasi-equilibrium problem via improvement sets. Asia Pac. J. Oper. Res. 37(04), 2040003 (2020)
Mishra, S.K., Wang, S.Y., Lai, K.K.: Optimality and duality for a multi-objective programming problem involving generalized d-type-I and related n-set functions. Eur. J. Oper. Res. 173, 405–418 (2006)
MathSciNet
Article
Google Scholar
Mishra, S.K., Wang, S.Y., Lai, K.K.: Gap function for set-valued vector variational-like inequalities. J. Optimiz. Theory App. 138, 77–84 (2008)
MathSciNet
Article
Google Scholar
Mishra, S.K., Upadhyay, B.B., An, L.T.H.: Lagrange multiplier characterizations of solution sets of constrained nonsmooth pseudolinear optimization problems. J. Optimiz. Theory App. 160, 763–777 (2014)
MathSciNet
Article
Google Scholar
Mishra, S.K., Jaiswal, M.: Optimality conditions and duality for semi-infinite programming problem with equilibrium constraints. Numer. Func. Anal. Opt. 36, 460–480 (2015)
MathSciNet
Article
Google Scholar
Tanaka, T.: Generalized quasiconvexities, cone saddle points and minimax theorems for vector valued functions. J. Optim. Theory Appl. 81, 355–377 (1994)
MathSciNet
Article
Google Scholar
Wang, J.J., Peng, Z.Y., Lin, Z., Zhou, D.Q.: On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. J. Ind. Manag. Optim. 17, 869–887 (2021)
MathSciNet
Article
Google Scholar
Yu, P.L.: Cone convexity, cone extreme points and nondominated solutions in decision problems with multiobjectives. J. Optim. Theory Appl. 14, 319–377 (1974)
MathSciNet
Article
Google Scholar
Zhao, K.Q., Yang, X.M.: A unified stability result with perturbations in vector optimization. Optim. Lett. 7, 1913–1919 (2013)
MathSciNet
Article
Google Scholar
Zhao, Y., Peng, Z.Y., Yang, X.M.: Semicontinuity and convergence for vector optimization problems with approximate equilibrium constraints. Optimization 65, 1397–1415 (2016)
MathSciNet
Article
Google Scholar