Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1998)
MATH
Google Scholar
Storjohann, A., Labahn, G.: Asymptotically fast computation of Hermite normal forms of integer matrices. In: Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation. ISSAC ’96, pp. 259–266. Association for Computing Machinery, New York, NY, USA (1996). https://doi.org/10.1145/236869.237083
Gribanov, V.D., Malyshev, S.D., Pardalos, M.P., Veselov, I.S.: FPT-algorithms for some problems related to integer programming. J. Comb. Optim. 35, 1128–1146 (2018). https://doi.org/10.1007/s10878-018-0264-z
MathSciNet
Article
MATH
Google Scholar
Storjohann, A.: Near optimal algorithms for computing Smith normal forms of integer matrices. In: Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation. ISSAC ’96, pp. 267–274. Association for Computing Machinery, New York, NY, USA (1996). https://doi.org/10.1145/236869.237084
Zhendong, W.: Computing the Smith Forms of Integer Matrices and Solving Related Problems. University of Delaware, Newark (2005)
Google Scholar
Gribanov, V.D., Chirkov, Y.A.: The width and integer optimization on simplices with bounded minors of the constraint matrices. Optim. Lett. 10, 1179–1189 (2016). https://doi.org/10.1007/s11590-016-1048-y
MathSciNet
Article
MATH
Google Scholar
De Loera, J.A., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point counting in rational convex polytopes. Symbolic computation in algebra and geometry. J. Symb. Comput. 38(4), 1273–1302 (2004). https://doi.org/10.1016/j.jsc.2003.04.003
Article
MATH
Google Scholar
Aliev, I., De Loera, J.A., Eisenbrand, F., Oertel, T., Weismantel, R.: The support of integer optimal solutions. SIAM J. Optim. 28(3), 2152–2157 (2018). https://doi.org/10.1137/17M1162792
MathSciNet
Article
MATH
Google Scholar
Berndt, S., Jansen, K., Klein, K.-M.: New bounds for the vertices of the integer hull, pp. 25–36. https://doi.org/10.1137/1.9781611976496.3
Lee, J., Paat, J., Stallknecht, I., Xu, L.: Improving proximity bounds using sparsity. In: Baïou, M., Gendron, B., Günlük, O., Mahjoub, A.R. (eds.) Combinatorial Optimization, pp. 115–127. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53262-8_10
Chapter
Google Scholar
Jansen, K., Rohwedder, L.: On integer programming, discrepancy, and convolution (2018). arXiv:1803.04744
Lovász, L., Spencer, J., Vesztergombi, K.: Discrepancy of set-systems and matrices. Eur. J. Comb. 7(2), 151–160 (1986). https://doi.org/10.1016/S0195-6698(86)80041-5
MathSciNet
Article
MATH
Google Scholar
Spencer, J.: Six standard deviations suffice. Trans. Am. Math. Soc. 289(2), 679–706 (1985). https://doi.org/10.1090/S0002-9947-1985-0784009-0
MathSciNet
Article
MATH
Google Scholar
Knop, D., Pilipczuk, M., Wrochna, M.: Tight complexity lower bounds for integer linear programming with few constraints. ACM Trans. Comput. Theory (2020). https://doi.org/10.1145/3397484
MathSciNet
Article
Google Scholar
Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer programming using the Steinitz lemma. ACM Trans. Algorithms (2019). https://doi.org/10.1145/3340322
Article
MATH
Google Scholar
Lee, J., Paat, J., Stallknecht, I., Xu, L.: Polynomial upper bounds on the number of differing columns of an integer program. arXiv preprint arXiv:2105.08160v2 [math.OC] (2021)
Oertel, T., Paat, J., Weismantel, R.: Sparsity of integer solutions in the average case. In: Lodi, A., Nagarajan, V. (eds.) Integer Programming and Combinatorial Optimization, pp. 341–353. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17953-3_26
Chapter
MATH
Google Scholar
Oertel, T., Paat, J., Weismantel, R.: The distributions of functions related to parametric integer optimization. SIAM J. Appl. Algebra Geom. 4(3), 422–440 (2020). https://doi.org/10.1137/19M1275954
MathSciNet
Article
MATH
Google Scholar
Veselov, S.I.: A proof of a generalization of the Borosh–Treybig conjecture on diophantine equations. Diskretnyi Analiz i Issledovanie Operatsii 8(1), 17–22 (2001). (in Russian)
MathSciNet
MATH
Google Scholar
Gribanov, D.V., Zolotykh, Y.N.: On lattice point counting in \(\delta \)-modular polyhedra. Optim. Lett. (2021). https://doi.org/10.1007/s11590-021-01744-x
Article
Google Scholar
Borosh, I., Treybig, L.B.: Bounds on positive integral solutions of linear diophantine equations. Proc. Am. Math. Soc. 55(2), 299–304 (1976). https://doi.org/10.1090/S0002-9939-1976-0396605-3
MathSciNet
Article
MATH
Google Scholar
Borosh, I., Treybig, L.: Bounds on positive integral solutions of linear diophantine equations II. Can. Math. Bull. 22(3), 357–361 (1979). https://doi.org/10.4153/CMB-1979-045-2
MathSciNet
Article
MATH
Google Scholar
Artmann, S., Eisenbrand, F., Glanzer, C., Oertel, T., Vempala, S., Weismantel, R.: A note on non-degenerate integer programs with small sub-determinants. Oper. Res. Lett. 44(5), 635–639 (2016). https://doi.org/10.1016/j.orl.2016.07.004
MathSciNet
Article
MATH
Google Scholar
Dadush, D., Peikert, C., Vempala, S.: Enumerative lattice algorithms in any norm via m-ellipsoid coverings. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 580–589 (2011). https://doi.org/10.1109/FOCS.2011.31
Dadush, D.: Integer programming, lattice algorithms, and deterministic volume estimation. Georgia Institute of Technology, ProQuest Dissertations Publishing, Ann Arbor (2012)
Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, Boston (1994)
MATH
Google Scholar
Basu, A., Jiang, H.: Enumerating integer points in polytopes with bounded subdeterminants. arXiv preprint arXiv:2102.09994 (2021)
McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17(2), 179–184 (1970). https://doi.org/10.1112/S0025579300002850
MathSciNet
Article
MATH
Google Scholar
Grünbaum, B.: Convex Polytopes. Graduate Texts in Mathematics. Springer, New York (2011)
Google Scholar
Veselov, I.S., Chirkov, Y.A.: Some estimates for the number of vertices of integer polyhedra. J. Appl. Ind. Math. 2, 591–604 (2008). https://doi.org/10.1134/S1990478908040157
MathSciNet
Article
Google Scholar
Veselov, I.S., Chirkov, Y.A.: On the vertices of implicitly defined integer polyhedra. Vestnik of Lobachevsky University of Nizhni Novgorod 1, 118–123 (2008). (in Russian)
Google Scholar
Chirkov, Y.A., Veselov, I.S.: On the vertices of implicitly defined integer polyhedra (part 2). Vestnik of Lobachevsky University of Nizhni Novgorod 2, 166–172 (2008). (in Russian)
Google Scholar
Cook, W., Hartmann, M., Kannan, R., McDiarmid, C.: On integer points in polyhedra. Combinatorica 12(1), 27–37 (1992). https://doi.org/10.1007/BF01191202
MathSciNet
Article
MATH
Google Scholar
Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, E.: Sensitivity theorems in integer linear programming. Math. Program. 34(3), 251–261 (1986). https://doi.org/10.1007/BF01582230
MathSciNet
Article
MATH
Google Scholar
Gomory, R.E.: On the relation between integer and noninteger solutions to linear programs. Proc. Natl. Acad. Sci. 53(2), 260–265 (1965). https://doi.org/10.1073/pnas.53.2.260
MathSciNet
Article
MATH
Google Scholar
Hu, C.T.: Integer Programming and Network Flows. Addison-Wesley Publishing Company, London (1970)
Google Scholar
Tomáš, G., Martin, K., Dušan, K.: Integer programming in parameterized complexity: five miniatures. Discrete Optim. (2020). https://doi.org/10.1016/j.disopt.2020.100596
Article
MATH
Google Scholar
Eisenbrand, F., Hunkenschröder, C., Klein, K.-M., Kouteckỳ, M., Levin, A., Onn, S.: An algorithmic theory of integer programming (2019). arXiv:1904.01361
Khachiyan, G.L.: Polynomial algorithms in linear programming. USSR Comput. Math. Math. Phys. 20(1), 53–72 (1980). https://doi.org/10.1016/0041-5553(80)90061-0
MathSciNet
Article
MATH
Google Scholar
Horst, R., Pardalos, M.P.: Handbook of Global Optimization. Springer, Boston (2013)
MATH
Google Scholar
Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing. STOC ’84, pp. 302–311. Association for Computing Machinery, New York, NY, USA (1984). https://doi.org/10.1145/800057.808695
Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia (1994)
Book
Google Scholar
Veselov, I.S., Shevchenko, N.V.: Estimates of minimal distance between point of some integral lattices. In: Combinatorial-Algebraic Methods in Applied Mathematics, pp. 26–33 (1980). (in Russian)
Shevchenko, V.N.: Qualitative Topics in Integer Linear Programming. American Mathematical Society, Providence (1996)
Book
Google Scholar
Glanzer, C., Stallknecht, I., Weismantel, R.: Notes on \(\{a, b, c\}\)-modular matrices (2021). arXiv:2106.14980
Veselov, S.I., Shevchenko, V.N.: On the minor characteristics of orthogonal integer lattices. Diskretnyi Analiz i Issledovanie Operatsii 15(4), 25–29 (2008). (in Russian)
MathSciNet
MATH
Google Scholar
Paat, J., Schlöter, M., Weismantel, R.: The integrality number of an integer program. Math. Program. (2021). https://doi.org/10.1007/s10107-021-01651-0
Article
MATH
Google Scholar
Megiddo, N., Tamir, A.: Linear time algorithms for some separable quadratic programming problems. Oper. Res. Lett. 13(4), 203–211 (1993). https://doi.org/10.1016/0167-6377(93)90041-E
MathSciNet
Article
MATH
Google Scholar
Gribanov, D. V.: An FPTAS for the \(\Delta \)-Modular Multidimensional Knapsack Problem. In: Pardalos, P., Khachay, M., Kazakov, A. (eds.) Mathematical Optimization Theory and Operations Research. MOTOR 2021. Lecture Notes in Computer Science, vol 12755. Springer, Cham. (2021). https://doi.org/10.1007/978-3-030-77876-7_6
Polak, A., Rohwedder, L., Wegrzycki, K.: Knapsack and subset sum with small items. arXiv:2105.04035v1 [cs.DS] (2021)
Gribanov, V.D., Malyshev, S.D., Veselov, I.S.: FPT-algorithm for computing the width of a simplex given by a convex hull. Mosc. Univ. Comput. Math. Cybern. 43(1), 1–11 (2016). https://doi.org/10.3103/S0278641919010084
MathSciNet
Article
MATH
Google Scholar
Chan, T.M., Lewenstein, M.: Clustered integer 3sum via additive combinatorics. In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing. STOC ’15, pp. 31–40. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2746539.2746568
Williams, R.R.: Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput. 47(5), 1965–1985 (2018). https://doi.org/10.1137/15M1024524
MathSciNet
Article
MATH
Google Scholar
Aliev, I., Henk, M., Oertel, T.: Distances to lattice points in knapsack polyhedra. Math. Program. 182, 175–198 (2019). https://doi.org/10.1007/s10107-019-01392-1
MathSciNet
Article
MATH
Google Scholar
Aliev, I., Averkov, G., De Loera, J.A., Oertel, T.: Sparse representation of vectors in lattices and semigroups. Math. Program. (2021). https://doi.org/10.1007/s10107-021-01657-8
Article
MATH
Google Scholar
Aliev, I., Celaya, M., Henk, M., Williams, A.: Distance-sparsity transference for vertices of corner polyhedra. SIAM J. Optim. 31(1), 200–216 (2021). https://doi.org/10.1137/20M1353228
MathSciNet
Article
MATH
Google Scholar
Bocker, S., Lipták, Z.: A fast and simple algorithm for the money changing problem. Algorithmica 48(4), 413–432 (2007). https://doi.org/10.1007/s00453-007-0162-8
MathSciNet
Article
MATH
Google Scholar
Klein, K.-M.: On the fine-grained complexity of the unbounded subsetsum and the Frobenius problem. arXiv:2108.05581v1 [cs.DS] (2021)
Pferschy, U.: Dynamic programming revisited: improving knapsack algorithms. Computing 63(4), 419–430 (1999). https://doi.org/10.1007/s006070050042
MathSciNet
Article
MATH
Google Scholar
Veselov, S.I., Chirkov, A.J.: Integer program with bimodular matrix. Discrete Optim. 6(2), 220–222 (2009). https://doi.org/10.1016/j.disopt.2008.12.002
MathSciNet
Article
MATH
Google Scholar
Artmann, S., Weismantel, R., Zenklusen, R.: A strongly polynomial algorithm for bimodular integer linear programming. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing. STOC 2017, pp. 1206–1219. Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3055399.3055473
Alekseev, E.V., Zakharova, V.D.: Independent sets in the graphs with bounded minors of the extended incidence matrix. J. Appl. Ind. Math. 5(1), 14–18 (2011). https://doi.org/10.1134/S1990478911010029
MathSciNet
Article
Google Scholar
Fiorini, S., Joret, G., Weltge, S., Yuditsky, Y.: Integer programs with bounded subdeterminants and two nonzeros per row (2021). arXiv:2106.05947
Malyshev, D.S., Gribanov, D.V.: The computational complexity of dominating set problems for instances with bounded minors of constraint matrices. Discrete Optim. 29, 103–110 (2018). https://doi.org/10.1016/j.disopt.2018.03.002
MathSciNet
Article
MATH
Google Scholar
Gribanov, D.V., Malyshev, D.S.: The computational complexity of three graph problems for instances with bounded minors of constraint matrices. Discrete Appl. Math. 227, 13–20 (2017). https://doi.org/10.1016/j.dam.2017.04.025
MathSciNet
Article
MATH
Google Scholar
Bonifas, N., Di Summa, M., Eisenbrand, F., Hähnle, N., Niemeier, M.: On sub-determinants and the diameter of polyhedra. Discrete Comput. Geom. 52, 102–115 (2014). https://doi.org/10.1007/s00454-014-9601-x
MathSciNet
Article
MATH
Google Scholar
Eisenbrand, F., Vempala, S.: Geometric random edge. Math. Program. 164, 325–339 (2007). https://doi.org/10.1007/s10107-016-1089-0
MathSciNet
Article
MATH
Google Scholar
Tardos, É.: A strongly polynomial algorithm to solve combinatorial linear programs. Oper. Res. 34(2), 250–256 (1986). https://doi.org/10.1287/opre.34.2.250
MathSciNet
Article
MATH
Google Scholar
Gribanov, D.V.: The flatness theorem for some class of polytopes and searching an integer point. In: Batsyn, M.V., Kalyagin, V.A., Pardalos, P.M. (eds.) Models, Algorithms and Technologies for Network Analysis, pp. 37–43. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09758-9_4
Chapter
Google Scholar
Gribanov, V.D., Veselov, I.S.: On integer programming with bounded determinants. Optim. Lett. 10, 1169–1177 (2016). https://doi.org/10.1007/s11590-015-0943-y
MathSciNet
Article
MATH
Google Scholar
Sebő, A.: An introduction to empty lattice simplices. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) Integer Programming and Combinatorial Optimization, pp. 400–414. Springer, Berlin (1999). https://doi.org/10.1007/3-540-48777-8_30
Chapter
Google Scholar
Lenstra, W.H.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983). https://doi.org/10.1287/moor.8.4.538
MathSciNet
Article
MATH
Google Scholar
Chirkov, Y.A., Gribanov, V.D., Malyshev, S.D., Pardalos, M.P., Veselov, I.S., Zolotykh, Y.N.: On the complexity of quasiconvex integer minimization problem. J. Glob. Optim. 73(4), 761–788 (2019). https://doi.org/10.1007/s10898-018-0729-8
MathSciNet
Article
MATH
Google Scholar
Veselov, S.I., Gribanov, D.V., Zolotykh, N.Y., Chirkov, A.Y.: A polynomial algorithm for minimizing discrete convic functions in fixed dimension. Discrete Appl. Math. 283, 11–19 (2020). https://doi.org/10.1016/j.dam.2019.10.006
MathSciNet
Article
MATH
Google Scholar
Gribanov, D.V., Malyshev, D.S.: Integer conic function minimization based on the comparison oracle. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds.) Mathematical Optimization Theory and Operations Research, pp. 218–231. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22629-9_16
Chapter
Google Scholar
Gribanov, V.D., Malyshev, S.D.: Minimization of even conic functions on the two-dimensional integral lattice. J. Appl. Ind. Math. 14(1), 56–72 (2020). https://doi.org/10.1134/S199047892001007X
Article
Google Scholar
Malyshev, D.S.: Critical elements in combinatorially closed families of graph classes. J. Appl. Ind. Math. 11(1), 99–106 (2017). https://doi.org/10.1134/S1990478917010112
MathSciNet
Article
MATH
Google Scholar
Malyshev, D.S.: A complexity dichotomy and a new boundary class for the dominating set problem. J. Comb. Optim. 32(1), 226–243 (2016). https://doi.org/10.1007/s10878-015-9872-z
MathSciNet
Article
MATH
Google Scholar
Malyshev, D.S.: Boundary graph classes for some maximum induced subgraph problems. J. Comb. Optim. 27(2), 345–354 (2014). https://doi.org/10.1007/s10878-012-9529-0
MathSciNet
Article
MATH
Google Scholar
Malyshev, D.: Classes of graphs critical for the edge list-ranking problem. J. Appl. Ind. Math. 8(2), 245–255 (2014). https://doi.org/10.1134/S1990478914020112
MathSciNet
Article
Google Scholar
Malyshev, D.S., Pardalos, P.M.: Critical hereditary graph classes: a survey. Optim. Lett. 10(8), 1593–1612 (2016). https://doi.org/10.1007/s11590-015-0985-1
MathSciNet
Article
MATH
Google Scholar
Gruber, M., Lekkerkerker, G.C.: Geometry of Numbers. Elsevier Science, Amsterdam (1987)
MATH
Google Scholar
Vaaler, J.: A geometric inequality with applications to linear forms. Pac. J. Math. 83(2), 543–553 (1979). https://doi.org/10.2140/pjm.1979.83.543
MathSciNet
Article
MATH
Google Scholar
Hayes, C.A., Larman, G David: The vertices of the knapsack polytope. Discrete Appl. Math. 6(2), 135–138 (1983). https://doi.org/10.1016/0166-218X(83)90067-7
MathSciNet
Article
MATH
Google Scholar
Hartmann, M.: Cutting planes and the complexity of the integer hull. Technical Report, Cornell University Operations Research and Industrial Engineering (1988)
Steinitz, E.: Bedingt konvergente reihen und konvexe systeme. Journal für die reine und angewandte Mathematik 143, 128–176 (1913). https://doi.org/10.1515/crll.1913.143.128
MathSciNet
Article
MATH
Google Scholar
Sevast’janov, S.: Approximate solution of some problems of scheduling theory. Metody Diskret. Anal. 32, 66–75 (1978)
MathSciNet
Google Scholar
Grinberg, V.S., Sevast’yanov, S.V.: Value of the Steinitz constant. Funktsional’nyi Analiz i ego Prilozheniya 14(2), 56–57 (1980)
MathSciNet
MATH
Google Scholar
Bárány, I.: On the Power of Linear Dependencies, pp. 31–45. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-85221-6_1
Book
MATH
Google Scholar
Di Summa, M., Eisenbrand, F., Faenza, Y., Moldenhauer, C.: On largest volume simplices and sub-determinants, pp. 315–323. https://doi.org/10.1137/1.9781611973730.23
Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4), 765–768 (1981). https://doi.org/10.1145/322276.322287
MathSciNet
Article
MATH
Google Scholar
McMullen, P.: Lattice invariant valuations on rational polytopes. Arch. Math. 31(1), 509–516 (1978). https://doi.org/10.1007/BF01226481
MathSciNet
Article
MATH
Google Scholar
Henk, M., Linke, E.: Note on the coefficients of rational Ehrhart quasi-polynomials of Minkowski-sums. Online J. Anal. Comb. 10, 12 (2015)
MathSciNet
MATH
Google Scholar