Skip to main content
Log in

Conical averagedness and convergence analysis of fixed point algorithms

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We study a conical extension of averaged nonexpansive operators and the role it plays in convergence analysis of fixed point algorithms. Various properties of conically averaged operators are systematically investigated, in particular, the stability under relaxations, convex combinations and compositions. We derive conical averagedness properties of resolvents of generalized monotone operators. These properties are then utilized in order to analyze the convergence of the proximal point algorithm, the forward–backward algorithm, and the adaptive Douglas–Rachford algorithm. Our study unifies, improves and casts new light on recent studies of these topics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baillon, J.-B., Bruck, R.E., Reich, S.: On the asymptotic behavior of nonexpansive mappings and semigroups. Houston J. Math. 4(1), 1–9 (1978)

    MathSciNet  MATH  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, Cham (2017)

    Book  Google Scholar 

  3. Bauschke, H.H., Noll, D., Phan, H.M.: Linear and strong convergence of algorithms involving averaged nonexpansive operators. J. Math. Anal. Appl. 421(1), 1–20 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bauschke, H.H., Moursi, W.M., Wang, X.: Generalized monotone operators and their averaged resolvents. Math. Program. Ser. B (2020)

  5. Borwein, J., Reich, S., Shafrir, I.: Krasnoselskii–Mann iterations in normed spaces. Canad. Math. Bull. 35(1), 21–28 (1992)

    Article  MathSciNet  Google Scholar 

  6. Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3(4), 459–470 (1977)

    MathSciNet  MATH  Google Scholar 

  7. Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer, New York (2008)

    MATH  Google Scholar 

  8. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6), 475–504 (2004)

    Article  MathSciNet  Google Scholar 

  9. Combettes, P.L., Pennanen, T.: Proximal methods for cohypomonotone operators. SIAM J. Control. Optim. 43(2), 731–742 (2004)

    Article  MathSciNet  Google Scholar 

  10. Combettes, P.L., Yamada, I.: Compositions and convex combinations of averaged nonexpansive operators. J. Math. Anal. Appl. 425(1), 55–70 (2015)

    Article  MathSciNet  Google Scholar 

  11. Dao, M.N., Phan, H.M.: Adaptive Douglas–Rachford splitting algorithm for the sum of two operators. SIAM J. Optim. 29(4), 2697–2724 (2019)

    Article  MathSciNet  Google Scholar 

  12. Dao, M.N., Phan, H.M.: Computing the resolvent of the sum of operators with application to best approximation problems. Optim. Lett. 14(5), 1193–1205 (2020)

    Article  MathSciNet  Google Scholar 

  13. Dao, M.N., Tam, M.K.: Union averaged operators with applications to proximal algorithms for min-convex functions. J. Optim. Theory Appl. 181(1), 61–94 (2019)

    Article  MathSciNet  Google Scholar 

  14. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  Google Scholar 

  15. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. Ser. A 55(3), 293–318 (1992)

    Article  MathSciNet  Google Scholar 

  16. Giselsson, P.: Tight global linear convergence rate bounds for Douglas–Rachford splitting. J. Fixed Point Theory Appl. 19(4), 2241–2270 (2017)

    Article  MathSciNet  Google Scholar 

  17. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  18. Goldstein, A.A.: Convex programming in Hilbert space. Bull. Am. Math. Soc. 70, 709–710 (1964)

    Article  MathSciNet  Google Scholar 

  19. Guo, K., Han, D., Yuan, X.: Convergence analysis of Douglas–Rachford splitting method for “strongly $+$ weakly” convex programming. SIAM J. Numer. Anal. 55(4), 1549–1577 (2017)

    Article  MathSciNet  Google Scholar 

  20. Kolobov, V.I., Reich, S., Zalas, R.: Weak, strong, and linear convergence of a double-layer fixed point algorithm. SIAM J. Optim. 27(3), 1431–1458 (2017)

    Article  MathSciNet  Google Scholar 

  21. Krasnosel’skiĭ, M.A.: Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 10, 123–127 (1955)

    MathSciNet  Google Scholar 

  22. Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MathSciNet  Google Scholar 

  23. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)

    Article  MathSciNet  Google Scholar 

  24. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Française Informat. Recherche Opérationnelle 4(R–3), 154–158 (1970)

    MathSciNet  MATH  Google Scholar 

  25. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I. Basic Theory. Springer, Berlin (2006)

    Book  Google Scholar 

  26. Ogura, N., Yamada, I.: Non-strictly convex minimization over the fixed point set of an asymptotically shrinking nonexpansive mapping. Numer. Funct. Anal. Optim. 23(1–2), 113–137 (2002)

    Article  MathSciNet  Google Scholar 

  27. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72(2), 383–390 (1979)

    Article  MathSciNet  Google Scholar 

  28. Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67(2), 274–276 (1979)

    Article  MathSciNet  Google Scholar 

  29. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  Google Scholar 

  30. Tam, M.K.: Algorithms based on unions of nonexpansive maps. Optim. Lett. 12(5), 1019–1027 (2018)

    Article  MathSciNet  Google Scholar 

  31. Vial, J.-P.: Strong and weak convexity of sets and functions. Math. Oper. Res. 8(2), 231–259 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank two anonymous referees for their careful review and helpful comments. SB was partially supported by a UMass Lowell faculty startup grant. MND was partially supported by Discovery Projects 160101537 and 190100555 from the Australian Research Council. HMP was partially supported by Autodesk, Inc. via a gift made to the Department of Mathematical Sciences, UMass Lowell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh N. Dao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartz, S., Dao, M.N. & Phan, H.M. Conical averagedness and convergence analysis of fixed point algorithms. J Glob Optim 82, 351–373 (2022). https://doi.org/10.1007/s10898-021-01057-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-021-01057-4

Keywords

Mathematics Subject Classification

Navigation