Skip to main content

Advertisement

Log in

Unique solvability of weakly homogeneous generalized variational inequalities

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

An interesting observation is that most pairs of weakly homogeneous mappings do not possess strongly monotonic property, which is one of the key conditions to ensure the unique solvability of the generalized variational inequality. This paper focuses on studying the uniqueness and solvability of the generalized variational inequality with a pair of weakly homogeneous mappings. By using a weaker condition than the strong monotonicity and some additional conditions, we achieve several results on the unique solvability to the underlying problem, which are exported by making use of the exceptional family of elements. As an adjunct, we also obtain the nonemptiness and compactness of the solution sets to the weakly homogeneous generalized variational inequality under some appropriate conditions. The conclusions presented in this paper are new or supplements to the existing ones even when the problem comes down to its important subclasses studied in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, X.L., Huang, Z.H., Wang, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170, 72–84 (2016)

    Article  MathSciNet  Google Scholar 

  2. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic, Boston (1992)

    MATH  Google Scholar 

  3. Facchinei, F., Pang, J.S.: Finite Dimensional Variational Inequalities and Complementarity Problems, vol. I. Spinger, New York (2003)

    MATH  Google Scholar 

  4. Facchinei, F., Pang, J.S.: Finite Dimensional Variational Inequalities and Complementarity Problems, vol. II. Spinger, New York (2003)

    MATH  Google Scholar 

  5. Gowda, M.S.: Applications of degree theory to linear complementarity problems. Math. Oper. Res. 18(4), 868–879 (1993)

    Article  MathSciNet  Google Scholar 

  6. Gowda, M.S.: Polynomial complementarity problems. Pac. J. Optim. 13(2), 227–241 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Gowda, M.S., Sossa, D.: Weakly homogeneous variational inequalities and solvability of nonlinear equations over cones. Math. Program. 177, 149–171 (2019)

    Article  MathSciNet  Google Scholar 

  8. Han, J.Y., Huang, Z.H., Fang, S.C.: Solvability of variational inequality problems. J. Optim. Theory Appl. 122(3), 501–520 (2004)

    Article  MathSciNet  Google Scholar 

  9. Han, J.Y., Xiu, N.H., Qi, H.D.: Nonlinear Complementarity Theorey and Algorithms. Shanghai Science and Technology Press, Shanghai (2006). (in Chinese)

  10. Hieu, V.T.: Solution maps of polynomial variational inequalities. J. Global Optim. 77, 807–824 (2020)

    Article  MathSciNet  Google Scholar 

  11. Huang, Z.H., Qi, L.Q.: Tensor complementarity problems part I: basic theory. J. Optim. Theory Appl. 183(1), 1–23 (2019)

    Article  MathSciNet  Google Scholar 

  12. Huang, Z.H., Qi, L.Q.: Tensor complementarity problems part III: applications. J. Optim. Theory Appl. 183(3), 771–791 (2019)

    Article  MathSciNet  Google Scholar 

  13. Isac, G., Bulavski, V., Kalashnikov, V.: Exceptional families, topological degree and complementarity problems. J. Global Optim. 10, 207–225 (1997)

    Article  MathSciNet  Google Scholar 

  14. Kanzow, C., Fukushima, M.: Equivalence of the generalized complementarity problem to differentiable unconstrained minimization. J. Optim. Theory Appl. 90, 581–603 (1996)

    Article  MathSciNet  Google Scholar 

  15. Karamardian, S.: Generalized complementarity problem. J. Optim. Theory Appl. 8(3), 161–168 (1971)

    Article  MathSciNet  Google Scholar 

  16. Karamardian, S.: Complementarity problems over cones with monotone and pseudomonotone maps. J. Optim. Theory Appl. 18, 445–454 (1976)

    Article  MathSciNet  Google Scholar 

  17. Ling, L.Y., He, H.J., Ling, C.: On error bounds of polynomial complementarity problems with structured tensors. Optimization 67(2), 341–358 (2018)

    Article  MathSciNet  Google Scholar 

  18. Ling, L.Y., Ling, C., He, H.J.: Properties of the solution set of generalized polynomial complementarity problems. Pac. J. Optim. 16(1), 155–174 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Liu, D.D., Li, W., Vong, S.W.: Tensor complementarity problems: the GUS-property and an algorithm. Linear Multilinear A. 66(9), 1726–1749 (2018)

    Article  MathSciNet  Google Scholar 

  20. Lloyd, N.G.: Degree Theory. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  21. Ma, X.X., Zheng, M.M., Huang, Z.H.: A note on the nonemptiness and compactness of solution sets of weakly homogeneous variational inequalities. SIAM J. Optim. 30(1), 132–148 (2020)

    Article  MathSciNet  Google Scholar 

  22. Megiddo, N., Kojima, M.: On the existence and uniqueness of solutions in nonlinear complementarity problems. Math. Program. 12, 110–130 (1977)

    Article  Google Scholar 

  23. Moré, J.J.: Classes of functions and feasibility conditions in nonlinear complementarity problems. Math. Program. 6, 327–338 (1974)

    Article  MathSciNet  Google Scholar 

  24. Noor, M.A.: Quasi variational inequalities. Appl. Math. Lett. 1(4), 367–370 (1988)

    Article  MathSciNet  Google Scholar 

  25. Ortega, J.M., Rheinholdt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    Google Scholar 

  26. Pang, J.S., Yao, J.C.: On a generalization of a normal map and equation. SIAM J. Control Optim. 33, 168–184 (1995)

    Article  MathSciNet  Google Scholar 

  27. Wang, J., Huang, Z.H., Xu, Y.: Existence and uniqueness of solutions of the generalized polynomial variational inequality. Optim. Lett. 14, 1571–1582 (2020)

    Article  MathSciNet  Google Scholar 

  28. Wang, Y., Huang, Z.H., Qi, L.Q.: Global uniqueness and solvability of tensor variational inequalities. J. Optim. Theory Appl. 177(1), 137–152 (2018)

    Article  MathSciNet  Google Scholar 

  29. Zhao, Y.B., Isac, G.: Quasi-\(P^*\)-maps, \(P(\tau,\alpha,\beta )\)-maps, exceptional family of elements and complementarity problem. J. Optim. Theory Appl. 105, 213–231 (2000)

    Article  MathSciNet  Google Scholar 

  30. Zheng, M.M., Huang, Z.H., Ma, X.X.: Nonemptiness and compactness of solution sets to generalized polynomial complementarity problems. J. Optim. Theory Appl. 185, 80–98 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant No. 11871051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Hai Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Zheng, M. & Huang, ZH. Unique solvability of weakly homogeneous generalized variational inequalities. J Glob Optim 80, 921–943 (2021). https://doi.org/10.1007/s10898-021-01040-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-021-01040-z

Keywords

Navigation