Skip to main content

Mixed integer nonlinear optimization models for the Euclidean Steiner tree problem in \(\mathbb {R}^d\)


New mixed integer nonlinear optimization models for the Euclidean Steiner tree problem in d-space (with \(d\ge 3\)) will be presented in this work. All models feature a nonsmooth objective function but the continuous relaxations of their set of feasible solutions are convex. From these models, four convex mixed integer linear and nonlinear relaxations will be considered. Each relaxation has the same set of feasible solutions as the set of feasible solutions of the model from which it is derived. Finally, preliminary computational results highlighting the main features of the presented relaxations will be discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Brazil, M., Graham, R.L., Thomas, D.A., Zachariasen, M.: On the history of the Euclidean Steiner tree problem. Arch. Hist. Exact Sci. 68, 327–354 (2014)

    MathSciNet  Article  Google Scholar 

  2. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-Completeness. W.H. Freeman and Company, San Francisco, CA, USA (1979)

    MATH  Google Scholar 

  3. Garey, M.R., Graham, R.L., Johnson, D.S.: Complexity of computing Steiner minimal trees. SIAM J. Appl. Math. 32(4), 835–859 (1977)

    MathSciNet  Article  Google Scholar 

  4. Montenegro, F., Torreão, J.R.A., Maculan, N.: Microcanonical optimization for the Euclidean Steiner problem in \({\mathbb{R}}^n\) with application to phylogenetic inference. Phys. Rev. E 68, 056702 (2003)

    Article  Google Scholar 

  5. Cavalli-Sforza, L.L., Edwards, A.W.F.: Phylogenetic analysis: models and estimation procedures. Evolution 21, 550–570 (1967)

    Article  Google Scholar 

  6. Brazil, M., Thomas, D.A., Nielson, B.K., Winter, P., Wulff-Nilsen, C., Zachariasen, M.: A novel approach to phylogenetic trees: \(d\)-dimensional geoemtric Steiner trees. Networks 53(2), 104–111 (2009)

    MathSciNet  Article  Google Scholar 

  7. Stanton, C., Smith, J.M.: Steiner trees and \(3\)-d macromolecular conformation. Inform. J. Comput. 16, 470–485 (2004)

    Article  Google Scholar 

  8. Smith, J.M., Jang, Y., Kim, M.K.: Steiner minimal trees, twist angles, and the protein folding problem. Prot. Struct. Funct. Bioinform. 66(4), 889–902 (2007)

    Article  Google Scholar 

  9. Zachariasen, M.: Large Euclidean Steiner minimum trees in an hour. PhD thesis, University of Copenhagen (1998)

  10. Warm, D.M., Zachariasen, M.: Large Euclidean Steiner minimum trees in an hour. In: ISMP (1997)

  11. Warm, D.M., Winter, P., Zachariasen, M.: Exact algorithms for plan Steiner tree problems: a computational study. Technical report (1998)

  12. Fampa, M.H.C., Lee, J., Maculan, N.: An overview of exact algorithms for the Euclidean Steiner tree problem in \(n\)-space. Int. Trans. Op. Res. (ITOR) 23(4), 861–874 (2016)

    MathSciNet  Article  Google Scholar 

  13. Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16(1), 1–29 (1968)

    MathSciNet  Article  Google Scholar 

  14. Smith, W.D.: How to find Steiner minimal trees in Euclidean \(d\)-space. Algorithmica 7(2–3), 137–177 (1992)

    MathSciNet  Article  Google Scholar 

  15. Maculan, N., Michelon, Ph., Xavier, A.E.: The Euclidean Steiner tree problem in \(\mathbb{R}^n:\) a mathematical programming formulation. Ann. Op. Res. 96, 209–220 (2000)

  16. Fampa, M.H.C., Maculan, N.: A new relaxation in conic form for the Euclidean Steiner problem in \(\mathbb{R}^n\). RAIRO - Op. Res. 35(4), 283–394 (2001)

    MATH  Google Scholar 

  17. Fampa, M.H.C., Maculan, N.: Using a conic formulation for finding Steiner minimal trees. Num. Algorithms 35(4), 315–330 (2004)

    MathSciNet  Article  Google Scholar 

  18. D’Ambrosio, C., Fampa, M.H.C., Lee, J., Vigerske, S.: On a nonconvex MINLP formulation of the Euclidean Steiner tree problem in n-space: missing proofs. Optim. Lett. 14, 409–415 (2020)

    MathSciNet  Article  Google Scholar 

  19. Fampa, M.: Insight into the computation of Steiner minimal trees in Euclidean space of general dimension. Discrete Applied Mathematics (2019).

    MathSciNet  Article  MATH  Google Scholar 

  20. Fampa, M., Anstreicher, K.: An improved algorithm for computing Steiner minimal trees in Euclidean \(d\)-space. Disc. Optim. 5, 530–540 (2008)

    MathSciNet  Article  Google Scholar 

  21. Fampa, M., Lee, J., Melo, W.: A specialized branch-and-bound algorithm for the Euclidean Steiner tree problem in \(n\)-pace. Comput. Optim. Appl. 65, 47–71 (2016)

    MathSciNet  Article  Google Scholar 

  22. Fonseca, R., Brazil, M., Winter, P., Zachariasen, M.: Faster exact algorithms for computing Steiner trees in higher dimensional Euclidean spaces. Presented at the \(11\)th DIMACS implementation challenge workshop, (2014)

  23. Van Laarhoven, J.W., Anstreicher, K.M.: Geometric conditions for Euclidean Steiner trees in \(\mathbb{R}^d\). Comput. Geom. 46, 520–531 (2013)

    MathSciNet  Article  Google Scholar 

Download references


We are grateful to the referee for her (or his) careful reading, insightful and precise comments. This work was partially supported by the National Council for Scientific and Technological Development - CNPq, under grant 302578/2014-5, COPPETEC Foundation, and by CAPES-MEC.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hacene Ouzia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ouzia, H., Maculan, N. Mixed integer nonlinear optimization models for the Euclidean Steiner tree problem in \(\mathbb {R}^d\). J Glob Optim 83, 119–136 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Integer Programming
  • Euclidean Steiner tree problem
  • Steiner tree
  • Nonlinear optimization models
  • Mixed integer nonlinear optimization
  • Relaxation