Resolving sets and integer programs for recommender systems

Abstract

Recommender systems make use of different sources of information for providing users with recommendations of items. Such systems are often based on either collaborative filtering methods which make automatic predictions about the interests of a user, using preferences of similar users, or content based filtering that matches the user’s personal preferences with item characteristics. We adopt the content-based approach and propose to use the concept of resolving set that allows to determine the preferences of the users with a very limited number of ratings. We also show how to make recommendations when user ratings are imprecise or inconsistent, and we indicate how to take into account situations where users possibly don’t care about the attribute values of some items. All recommendations are obtained in a few seconds by solving integer programs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  2. 2.

    Akhil, P., Shelbi, J.: A survey of recommender system types and its classification. Int. J. Adv. Res. Comput. Sci. 8(9), 486–491 (2017)

    Article  Google Scholar 

  3. 3.

    Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihalak, M., Ram, L.: Network discovery and verification. IEEE J. Sel. Areas Commun. 24(12), 2168–2181 (2006)

    Article  Google Scholar 

  4. 4.

    Berkovsky, S., Kuflik, T., Ricci, F.: Mediation of user models for enhanced personalization in recommender systems. User Model. User-Adap. Inter. 18(3), 245–286 (2008)

    Article  Google Scholar 

  5. 5.

    Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)

    Article  Google Scholar 

  6. 6.

    Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002)

    Article  Google Scholar 

  7. 7.

    Chartrand, G., Eroha, L., Johnson, M., Oellermann, O.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105, 99–113 (2000)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–71 (1992)

    Article  Google Scholar 

  9. 9.

    Harary, F., Melter, R.: On the metric dimension of a graph. Ars Comb. 2, 191–195 (1976)

    MATH  Google Scholar 

  10. 10.

    Hertz, A.: An IP-based swapping algorithm for the metric dimension and minimal doubly resolving set problems in hypercubes. Optim Lett. 8, 1–13 (2017). https://doi.org/10.1007/s11590-017-1184-z

    Article  Google Scholar 

  11. 11.

    Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math. 70(3), 217–229 (1996)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Movielens website. https://movielens.org

  13. 13.

    Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems Handbook. Recommender Systems Handbook, pp. 1–35. Springer, Berlin (2011)

    Google Scholar 

  14. 14.

    Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–59 (1997)

    Article  Google Scholar 

  15. 15.

    Slater, P.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Webb, G.I.: Naïve Bayes. Encyclopedia of Machine Learning, pp. 713–714. Springer, Boston, MA (2011)

    Google Scholar 

  17. 17.

    Yelp website. https://www.yelp.com

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alain Hertz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hertz, A., Kuflik, T. & Tuval, N. Resolving sets and integer programs for recommender systems. J Glob Optim (2021). https://doi.org/10.1007/s10898-020-00982-0

Download citation

Keywords

  • Recommender systems
  • Resolving sets
  • Integer programs