Skip to main content
Log in

Efficient computation of minimum-area rectilinear convex hull under rotation and generalizations

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Let P be a set of n points in the plane. We compute the value of \(\theta \in [0,2\pi )\) for which the rectilinear convex hull of P, denoted by \(\mathcal {RH}_{P}({\theta })\), has minimum (or maximum) area in optimal \(O(n\log n)\) time and O(n) space, improving the previous \(O(n^2)\) bound. Let \(\mathcal {O}\) be a set of k lines through the origin sorted by slope and let \(\alpha _i\) be the sizes of the 2k angles defined by pairs of two consecutive lines, \(i=1, \ldots , 2k\). Let \(\Theta _{i}=\pi -\alpha _i\) and \(\Theta =\min \{\Theta _i :i=1,\ldots ,2k\}\). We obtain: (1) Given a set \(\mathcal {O}\) such that \(\Theta \ge \frac{\pi }{2}\), we provide an algorithm to compute the \(\mathcal {O}\)-convex hull of P in optimal \(O(n\log n)\) time and O(n) space; If \(\Theta < \frac{\pi }{2}\), the time and space complexities are \(O(\frac{n}{\Theta }\log n)\) and \(O(\frac{n}{\Theta })\) respectively. (2) Given a set \(\mathcal {O}\) such that \(\Theta \ge \frac{\pi }{2}\), we compute and maintain the boundary of the \({\mathcal {O}}_{\theta }\)-convex hull of P for \(\theta \in [0,2\pi )\) in \(O(kn\log n)\) time and O(kn) space, or if \(\Theta < \frac{\pi }{2}\), in \(O(k\frac{n}{\Theta }\log n)\) time and \(O(k\frac{n}{\Theta })\) space. (3) Finally, given a set \(\mathcal {O}\) such that \(\Theta \ge \frac{\pi }{2}\), we compute, in \(O(kn\log n)\) time and O(kn) space, the angle \(\theta \in [0,2\pi )\) such that the \({\mathcal {O}}_{\theta }\)-convex hull of P has minimum (or maximum) area over all \(\theta \in [0,2\pi )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Abello, J., Estivill-Castro, V., Shermer, T., Urrutia, J.: Illumination of orthogonal polygons with orthogonal floodlights. Int. J. Comput. Geom. Appl. 8(1), 25–38 (1998)

    Article  MathSciNet  Google Scholar 

  2. Alegría-Galicia, C., Garduño, T., Rosas-Navarrete, A., Seara, C., Urrutia, J.: Rectilinear convex hull with minimum area. In: Special LNCS Festschrift volume in honor of Ferran Hurtado’s 60th Birthday. Lecture Notes in Computer Science, vol. 7579, pp. 226–235 (2012)

  3. Alegría-Galicia, C., Seara, C., Urrutia, J.: Computing containment relations between rectilinear convex hulls. In: Mexican Conference on Discrete Mathematics and Computational Geometry, 60th Birthday of Jorge Urrutia (2013)

  4. Alegría-Galicia, C., Orden, D., Seara, C., Urrutia, J.: On the \(\cal O\it \)-hull of planar point sets. In: 30th European Workshop on Computational Geometry (EuroCG) (2014)

  5. Alegría-Galicia, C., Orden, D., Seara, C., Urrutia, J.: Optimizing an oriented convex hull with two directions. In: 31th European Workshop on Computational Geometry (EuroCG) (2015)

  6. Alegría-Galicia, C., Orden, D., Seara, C., Urrutia, J.: On the \(\cal{O}_\beta \)-hull of a planar point set. Comput. Geom. Theory Appl. 68, 277–291 (2018)

    Article  MathSciNet  Google Scholar 

  7. Avis, D., Beresford-Smith, B., Devroye, L., Elgindy, H., Guévremont, E., Hurtado, F., Zhu, B.: Unoriented \(\Theta \)-maxima in the plane: complexity and algorithms. SIAM J. Comput. 28(1), 278–296 (1999)

    Article  MathSciNet  Google Scholar 

  8. Bae, S.W., Lee, Ch., Ahn, H.-K., Choi, S., Chwa, K.-Y.: Computing minimum-area rectilinear convex hull and L-shape. Comput. Geom. Theory Appl. 42(9), 903–912 (2009)

    Article  MathSciNet  Google Scholar 

  9. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput. 4059, 643–647 (2006)

    MATH  Google Scholar 

  10. Biedl, T., Genç, B.: Reconstructing orthogonal polyhedra from putative vertex sets. Comput. Geom. Theory Appl. 44(8), 409–417 (2011)

    Article  MathSciNet  Google Scholar 

  11. Biswas, A., Bhowmick, P., Sarkar, M., Bhattacharya, B.B.: Finding the orthogonal hull of a digital object: a combinatorial approach. In: Proceedings of the 12th International Conference on Combinatorial Image Analysis, IWCIA’08 (2008), pp. 124–135

  12. Bonerath, A., Niedermann, B., Haunert, J.: Retrieving \(\alpha \)-shapes and schematic polygonal approximations for sets of points within queried temporal ranges. In: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 249–258 (2019)

  13. Daymude, J.J., Gmyr, R., Hinnenthal, K., Kostitsyna, K., Scheideler, C., Richa, A.: Convex hull formation for programmable matter. In: Proceedings of the 21st International Conference on Distributed Computing and Networking, Article 2, pp. 1–10 (2020)

  14. Díaz-Báñez, J.M., López, M.A., Mora, M., Seara, C., Ventura, I.: Fitting a two-joint orthogonal chain to a point set. Comput. Geom. Theory Appl. 44(3), 135–147 (2011)

    Article  MathSciNet  Google Scholar 

  15. Dutt, M., Biswas, A., Bhowmick, P., Bhattacharya, B.B.: On finding an orthogonal convex skull of a digital object. Int. J. Imaging Syst. Technol. 21(1), 14–27 (2011)

    Article  Google Scholar 

  16. Fink, E., Wood, D.: Restricted-Orientation Convexity. Monographs in Theoretical Computer Science (An EATCS Series). Springer, Berlin (2004)

    Google Scholar 

  17. Franěk, V., Matoušek, J.: Computing \(D\)-convex hulls in the plane. Comput. Geom. Theory Appl. 42(1), 81–89 (2009)

    Article  MathSciNet  Google Scholar 

  18. Griffiths, V., Scanlan, J.P., Eres, M.H., Martinez-Sykora, A., Chinchapatnam, P.: Cost-driven build orientation and bin packing of parts in selective laser melting (SLM). Eur. J. Oper. Res. 273(1), 334–352 (2019)

    Article  Google Scholar 

  19. Güting, R.H.: Conquering contours: efficient algorithms for computational geometry. In: PhD Thesis, Fachbereich Informatik, Universität Dortmund (1983)

  20. Kung, H.-T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. J. ACM 22(4), 469–476 (1975)

    Article  MathSciNet  Google Scholar 

  21. López Chau, A., Li, X., Yu, W.: Convex and concave hulls for classification with support vector machine. Neurocomputing 122, 198–209 (2013)

    Article  Google Scholar 

  22. Matoušek, J., Plecháč, P.: On functional separately convex hulls. Discrete Comput. Geom. 19(1), 105–130 (1998)

    Article  MathSciNet  Google Scholar 

  23. Montuno, D.Y., Fournier, A.: Finding XY Convex Hull of a Set of XY Polygons. Computer Systems Research Group, University of Toronto, Toronto (1982)

    Google Scholar 

  24. Nicholl, T.N., Lee, D.-T., Liao, Y.-Z., Wong, C.-K.: On the XY convex hull of a set of XY polygons. BIT Numer. Math. 23(4), 456–471 (1983)

    Article  Google Scholar 

  25. Ottmann, T., Soisalon-Soininen, E., Wood, D.: On the definition and computation of rectilinear convex hulls. Inf. Sci. 33(3), 157–171 (1984)

    Article  MathSciNet  Google Scholar 

  26. Preparata, F.P., Shamos, M.I.: Computational Geometry: An introduction. Springer, Berlin (1985)

    Book  Google Scholar 

  27. Raicu, D.S., Furst, J.D., Channin, D., Xu, D.-H., Kurani, A., Aioaneid, S.: A texture dictionary for human organs tissues’ classification. In: Proceedings of the 8th World Multiconference on Systemics, Cybernetics and Informatics (SCI 2004) (2004)

  28. Rawlins, G.J.E., Wood, D.: Ortho-Convexity and Its Generalizations. Computational Morphology: A Computational Geometric Approach to the Analysis of Form. North-Holland, Amsterdam (1988)

    Google Scholar 

  29. Sheikhi, F., Mohades, A., de Berg, M., Davoodi, M.: Separating bichromatic point sets by L-shapes. Comput. Geom. Theory Appl. 48(9), 673–687 (2015)

    Article  MathSciNet  Google Scholar 

  30. Son, W., Hwang, S., Ahn, H.-K.: MSSQ: Manhattan spatial skyline queries. Inf. Syst. 40, 67–83 (2014)

    Article  Google Scholar 

  31. Uchoa, E., Poggi de Aragão, M., Ribeiro, C.: Preprocessing Steiner problems from VLSI layout. Networks 40(1), 38–50 (1999)

    Article  MathSciNet  Google Scholar 

  32. van Lankveld, T., van Kreveld, M., Veltkamp, R.: Identifying rectangles in laser range data for urban scene reconstruction. Comput. Gr. 35(3), 719–725 (2011)

    Article  Google Scholar 

  33. Xu, J., Deb, K., Gaur, A.: Identifying the Pareto-optimal solutions for multi-point distance minimization problem in Manhattan space. In: Computational Optimization and Innovation (COIN) Laboratory, Technical Report COIN Report 2015018 (2015)

  34. Zhang, X., Tang, Z., Yu, J., Guo, M., Jiang, L.: Convex hull properties and algorithms. Appl. Math. Comput. 216(11), 3209–3218 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Seara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended abstracts related to this work were presented at the XIV Spanish Meeting on Computational Geometry [2] and the 30th European Workshop on Computational Geometry (EuroCG) [4]. Carlos Alegría: Research supported in part by UNAM Project PAEP, and by MIUR Proj. “AHeAD” No. 20174LF3T8. David Orden: Research supported by Projects MTM2017-83750-P of the Spanish Ministry of Science (AEI/FEDER, UE), and Project PID2019-104129GB-I00 of the Spanish Ministry of Science and Innovation. Carlos Seara: Research supported by Projects Gen. Cat. DGR 2017SGR1640, MINECO MTM2015-63791-R, and Project PID2019-104129GB-I00 of the Spanish Ministry of Science and Innovation. Jorge Urrutia: Research supported in part by SEP-CONACYT 80268, PAPPIIT IN102117 Programa de Apoyo a la Investigación e Innovación Tecnológica UNAM. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 734922.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alegría, C., Orden, D., Seara, C. et al. Efficient computation of minimum-area rectilinear convex hull under rotation and generalizations. J Glob Optim 79, 687–714 (2021). https://doi.org/10.1007/s10898-020-00953-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-020-00953-5

Keywords

Navigation