Skip to main content

A combination of RANSAC and DBSCAN methods for solving the multiple geometrical object detection problem

Abstract

In this paper we consider the multiple geometrical object detection problem. On the basis of the set \(\mathcal {A}\) containing data points coming from and scattered among a number of geometrical objects not known in advance, we should reconstruct or detect those geometrical objects. A new efficient method for solving this problem based on the popular RANSAC method using parameters from the DBSCAN method is proposed. Thereby, instead of using classical indexes for recognizing the most appropriate partition, we use parameters from the DBSCAN method which define the necessary conditions proven to be far more efficient. Especially, the method is applied to solving multiple circle detection problem. In this case, we give both the conditions for the existence of the best circle as a representative of the data set and the explicit formulas for the parameters of the best circle. In the illustrative example, we consider the multiple circle detection problem for the data point set \(\mathcal {A}\) coming from 5 intersected circles not known in advance. The method is tested on numerous artificial data sets and it has shown high efficiency. The comparison of the proposed method with other well-known methods of circle detection in real-world images also indicates a significant advantage of our method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    All evaluations were done on the basis of our own Mathematica-modules freely available at: https://www.mathos.unios.hr/images/homepages/scitowsk/DBRAN.rar, and were performed on the computer with a 2.90 GHz Intel(R) Core(TM)i7-75000 CPU with 16GB of RAM.

References

  1. 1.

    Akinlar, C., Topal, C.: EDCircles: a real-time circle detector with a false detection control. Pattern Recogn. 46, 725–740 (2013)

    Article  Google Scholar 

  2. 2.

    Bagirov, A.M., Ugon, J., Mirzayeva, H.: Nonsmooth nonconvex optimization approach to clusterwise linear regression problems. Eur. J. Oper. Res. 229, 132–142 (2013)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Brüntjen, K., Späth, H.: Incomplete total least squares. Numer. Math. 81, 521–538 (1999)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Ester, M., Kriegel, H., Sander, J.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, pp. 226–231 (1996)

  5. 5.

    Fernández, C., Moreno, V., Curto, B., Vicente, J.A.: Clustering and line detection in laser range measurements. Robot. Auton. Syst. 58, 720–726 (2010)

    Article  Google Scholar 

  6. 6.

    Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Grbić, R., Grahovac, D., Scitovski, R.: A method for solving the multiple ellipses detection problem. Pattern Recogn. 60, 824–834 (2016)

    Article  Google Scholar 

  8. 8.

    Grbić, R., Nyarko, E.K., Scitovski, R.: A modification of the DIRECT method for Lipschitz global optimization for a symmetric function. J. Global Optim. 57, 1193–1212 (2013)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Horst, R., Tuy, H.: Global Optimization: Deterministic Approach. Springer (1996), 3rd, revised and enlarged edition

  10. 10.

    Jones, D.R.: The DIRECT global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) The Encyclopedia of Optimization, pp. 431–440. Kluwer Academic Publishers, Dordrect (2001)

    Chapter  Google Scholar 

  11. 11.

    Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Kvasov, D.E., Sergeyev, Y.D.: Multidimensional global optimization algorithm based on adaptive diagonal curves. Comput. Math. Math. Phys. 43, 40–56 (2003)

    MathSciNet  Google Scholar 

  13. 13.

    Manzanera, A., Nguyen, T.P., Xu, X.: Line and circle detection using dense one-to-one Hough transforms on greyscale images. EURASIP J. Image Video Process. (2016). https://doi.org/10.1186/s13640-016-0149-y

    Article  Google Scholar 

  14. 14.

    Marošević, T., Scitovski, R.: Multiple ellipse fitting by center-based clustering. Croat. Oper. Res. Rev. 6, 43–53 (2015)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Morales-Esteban, A., Martínez-Álvarez, F., Scitovski, S., Scitovski, R.: A fast partitioning algorithm using adaptive Mahalanobis clustering with application to seismic zoning. Comput. Geosci. 73, 132–141 (2014)

    Article  Google Scholar 

  16. 16.

    Moshtaghi, M., Havens, T.C., Bezdek, J.C., Park, L., Leckie, C., Rajasegarar, S., Keller, J.M., Palaniswami, M.: Clustering ellipses for anomaly detection. Pattern Recogn. 44, 55–69 (2011)

    Article  Google Scholar 

  17. 17.

    Mukhopadhyay, P., Chaudhuri, B.B.: A survey of Hough transform. Pattern Recogn. 48, 993–1010 (2015)

    Article  Google Scholar 

  18. 18.

    Nievergelt, Y.: A finite algorithm to fit geometrically all midrange lines, circles, planes, spheres, hyperplanes, and hyperspheres. Numer. Math. 91, 257–303 (2002)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased BIRECT algorithm with local accelerators for expensive global optimization. Expert Syst. Appl. 144, 113052 (2020). https://doi.org/10.1016/j.eswa.2019.113052

    Article  Google Scholar 

  20. 20.

    Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased DISIMPL algorithm for expensive global optimization. J. Global Optim. 59, 545–567 (2014)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, New York (2014)

    Book  Google Scholar 

  22. 22.

    Paulavičius, R., Žilinskas, J.: Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Optim. Lett. 10, 237–246 (2016)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Prasad, D.K., Leung, M.K.H., Quek, C.: ElliFit: an unconstrained, non-iterative, least squares based geometric Ellipse Fitting method. Pattern Recogn. 46, 1449–1465 (2013)

    Article  Google Scholar 

  24. 24.

    Radojičić, U., Scitovski, R., Sabo, K.: A fast and efficient method for solving the multiple closed curve detection problem. In: Marsico, M.D., di Baja, G.S., Fred, A. (eds.) Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods—Volume 1: ICPRAM, Prague, Czech Republic, pp. 269–276. ISBN: 978-989-758-351-3 (2019)

  25. 25.

    Rousseeuw, P.J., Hubert, M.: Robust statistics for outlier detection. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1, 73–79 (2011)

    Article  Google Scholar 

  26. 26.

    Scitovski, R., Marošević, T.: Multiple circle detection based on center-based clustering. Pattern Recogn. Lett. 52, 9–16 (2014)

    Article  Google Scholar 

  27. 27.

    Scitovski, R., Radojičić, U., Sabo, K.: A fast and efficient method for solving the multiple line detection problem. Rad HAZU Matematičke znanosti 23, 123–140 (2019)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Scitovski, R., Sabo, K.: Application of the DIRECT algorithm to searching for an optimal \(k\)-partition of the set A and its application to the multiple circle detection problem. J. Global Optim. 74(1), 63–77 (2019)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Scitovski, R., Sabo, K.: A combination of k-means and DBSCAN algorithm for solving the multiple generalized circle detection problem. Adv. Data Anal. Classif. (2020a). https://doi.org/10.1007/s11634-020-00385-9

    Article  Google Scholar 

  30. 30.

    Scitovski, R., Sabo, K.: DBSCAN-like clustering method for various data densities. Pattern Anal. Appl. 23, 541–554 (2020b). https://doi.org/10.1007/s10044-019-00809-z

    MathSciNet  Article  Google Scholar 

  31. 31.

    Scitovski, R., Scitovski, S.: A fast partitioning algorithm and its application to earthquake investigation. Comput. Geosci. 59, 124–131 (2013)

    Article  Google Scholar 

  32. 32.

    Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth diagonal auxiliary functions. Commun. Nonlinear Sci. Numer. Simul. 21, 99–111 (2015)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer Briefs in Optimization. Springer, Heidelberg (2013)

    Book  Google Scholar 

  34. 34.

    Späth, H.: Algorithm 48: a fast algorithm for clusterwise linear regression. Computing 29, 17–181 (1981)

    Google Scholar 

  35. 35.

    Späth, H.: Cluster-Formation und Analyse. R. Oldenburg Verlag, München (1983)

    MATH  Google Scholar 

  36. 36.

    Thomas, J.C.R.: A new clustering algorithm based on k-means using a line segment as prototype. In: Martin, C.S., Kim, S.-W. (eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pp. 638–645. Springer, Berlin (2011)

    Chapter  Google Scholar 

  37. 37.

    Vendramin, L., Campello, R.J.G.B., Hruschka, E.R.: On the comparison of relative clustering validity criteria. In: Proceedings of the SIAM International Conference on Data Mining, SDM 2009, April 30–May 2, 2009, Sparks, Nevada, USA, SIAM, pp. 733–744 (2009)

  38. 38.

    Vidović, I., Cupec, R., Hocenski, E.: Crop row detection by global energy minimization. Pattern Recogn. 55, 68–86 (2016)

    Article  Google Scholar 

  39. 39.

    Vidović, I., Scitovski, R.: Center-based clustering for line detection and application to crop rows detection. Comput. Electron. Agric. 109, 212–220 (2014)

    Article  Google Scholar 

  40. 40.

    Viswanath, P., Babu, V.S.: Rough-DBSCAN: a fast hybrid density based clustering method for large data sets. Pattern Recogn. Lett. 30, 1477–1488 (2009)

    Article  Google Scholar 

  41. 41.

    Wilcox, R.: Introduction to Robust Estimation and Hypothesis Testing, 3rd edn. Academic Press, Boston (2012)

    MATH  Google Scholar 

  42. 42.

    Wolfram Research, Inc.: Mathematica, Wolfram Research, Inc., Champaign (2020), version 11.0 edition

Download references

Acknowledgements

The author would like to thank the referees and the journal editors for their careful reading of the paper and insightful comments that helped us improve the paper. Especially, the authors would like to thank Mrs. Katarina Moržan for significantly improving English of this paper. This work was supported by the Croatian Science Foundation through research Grants IP-2016-06-6545 and IP-2016-06-8350.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rudolf Scitovski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scitovski, R., Majstorović, S. & Sabo, K. A combination of RANSAC and DBSCAN methods for solving the multiple geometrical object detection problem. J Glob Optim 79, 669–686 (2021). https://doi.org/10.1007/s10898-020-00950-8

Download citation

Keywords

  • RANSAC
  • DBSCAN
  • Multiple line detection problem
  • Multiple circle detection problem
  • Multiple ellipse detection problem
  • The most appropriate partition
  • Modified k-means