Skip to main content
Log in

On the search of the shape parameter in radial basis functions using univariate global optimization methods

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper we consider the problem of finding an optimal value of the shape parameter in radial basis function interpolation. In particular, we propose the use of a leave-one-out cross validation (LOOCV) technique combined with univariate global optimization methods, which involve strategies of global optimization with pessimistic improvement (GOPI) and global optimization with optimistic improvement (GOOI). This choice is carried out to overcome serious issues of commonly used optimization routines that sometimes result in shape parameter values are not globally optimal. New locally-biased versions of geometric and information Lipschitz global optimization algorithms are presented. Numerical experiments and applications to real-world problems show a promising performance and efficacy of the new algorithms, called LOOCV-GOPI and LOOCV-GOOI, in comparison with their direct competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In this section, “the objective function” means the function to be optimized, i.e., the error function in the approximation problem.

References

  1. Allasia, G., Cavoretto, R., De Rossi, A.: Lobachevsky spline functions and interpolation to scattered data. Comput. Appl. Math. 32, 71–87 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Barkalov, K., Gergel, V., Lebedev, I.: Solving global optimization problems on GPU cluster. In: Simos, T.E. (ed.) AIP Conference Proceedings, vol. 1738 (400006) (2016)

  3. Barkalov, K., Strongin, R.: Solving a set of global optimization problems by the parallel technique with uniform convergence. J. Global Optim. 71(1), 21–36 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Biazar, B., Hosami, M.: An interval for the shape parameter in radial basis function approximation. Appl. Math. Comput. 315, 131–149 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Buhmann, M.D.: Radial Basis Functions: Theory and Implementation. Cambridge Monographs on Applied and Computational Mathematics, vol. 12. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  6. Calvin, J., Žilinskas, A.: On the convergence of the P-algorithm for one-dimensional global optimization of smooth functions. J. Optim. Theory Appl. 102(3), 479–495 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Carlson, R.E., Foley, T.A.: Interpolation of track data with radial basis methods. Comput. Math. Appl. 24, 27–34 (1992)

    MathSciNet  MATH  Google Scholar 

  8. Cavoretto, R., De Rossi, A.: A trivariate interpolation algorithm using a cube-partition searching procedure. SIAM J. Sci. Comput. 37, A1891–A1908 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Cavoretto, R., De Rossi, A., Perracchione, E.: Optimal selection of local approximants in RBF-PU interpolation. J. Sci. Comput. 74, 1–22 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Cavoretto, R., Schneider, T., Zulian, P.: OpenCL based parallel algorithm for RBF-PUM interpolation. J. Sci. Comput. 74, 267–289 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Cheng, A.D.: Multiquadric and its shape parameter—a numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation. Eng. Anal. Bound. Elem. 36, 220–239 (2012)

    MathSciNet  MATH  Google Scholar 

  12. De Marchi, S., Santin, G.: Fast computation of orthonormal basis for rbf spaces through krylov space methods. BIT Numer. Math. 55, 949–966 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Fasshauer, G., McCourt, M.: Kernel-Based Approximation Methods Using Matlab, Interdisciplinary Mathematical Sciences, vol. 19. World Scientific, Singapore (2015)

    MATH  Google Scholar 

  14. Fasshauer, G.E.: Meshfree Approximation Methods with Matlab, Interdisciplinary Mathematical Sciences, vol. 6. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  15. Fasshauer, G.E.: Positive definite kernels: past, present and future. Dolomit. Res. Notes Approx. 4, 21–63 (2011)

    Google Scholar 

  16. Fasshauer, G.E., Zhang, J.G.: On choosing “optimal” shape parameters for RBF approximation. Numer. Algorithms 45, 345–368 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization, vol. 6, 2nd edn. Springer, New York (2009)

    MATH  Google Scholar 

  18. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33, 869–892 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Fowkes, J.M., Gould, N.I.M., Farmer, C.L.: A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions. J. Global Optim. 56, 1791–1815 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Gergel, V.P., Grishagin, V.A., Israfilov, R.A.: Local tuning in nested scheme of global optimization. Proc. Comput. Sci. 51, 865–874 (2015)

    Google Scholar 

  21. Gergel, V.P., Kuzmin, M.I., Solovyov, N.A., Grishagin, V.A.: Recognition of surface defects of cold-rolling sheets based on method of localities. Int. Rev. Autom. Control 8(1), 51–55 (2015)

    Google Scholar 

  22. Gillard, J.W., Zhigljavsky, A.A.: Stochastic algorithms for solving structured low-rank matrix approximation problems. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 70–88 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Golbabai, A., Mohebianfar, E., Rabiei, H.: On the new variable shape parameter strategies for radial basis functions. Comput. Appl. Math. 34, 691–704 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Grishagin, V.A., Israfilov, R.A., Sergeyev, Y.D.: Convergence conditions and numerical comparison of global optimization methods based on dimensionality reduction schemes. Appl. Math. Comput. 318, 270–280 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Kvasov, D.E., Mukhametzhanov, M.S.: Metaheuristic versus deterministic global optimization algorithms: the univariate case. Appl. Math. Comput. 318, 245–259 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Kvasov, D.E., Pizzuti, C., Sergeyev, Y.D.: Local tuning and partition strategies for diagonal GO methods. Numer. Math. 94(1), 93–106 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Kvasov, D.E., Sergeyev, Y.D.: Deterministic approaches for solving practical black-box global optimization problems. Adv. Eng. Softw. 80, 58–66 (2015)

    Google Scholar 

  28. Lera, D., Sergeyev, Y.D.: Acceleration of univariate global optimization algorithms working with Lipschitz functions and Lipschitz first derivatives. SIAM J. Optim. 23(1), 508–529 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Luh, L.T.: The shape parameter in the Gaussian function. Comput. Math. Appl. 63, 687–694 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer Briefs in Optimization. Springer, New York (2014)

    MATH  Google Scholar 

  31. Pazouki, M., Schaback, R.: Bases for kernel-based spaces. J. Comput. Appl. Math. 236, 575–588 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Piyavskij, S.A.: An algorithm for finding the absolute extremum of a function. USSR Comput. Math. Math. Phys. 12(4), 57–67 (1972). In Russian: Zh. Vychisl. Mat. Mat. Fiz., 12(4) (1972), pp. 888–896

  33. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2014)

  34. Rippa, S.: An algorithm for selecting a good value for the parameter \(c\) in radial basis function interpolation. Adv. Comput. Math. 11, 193–210 (1999)

    MathSciNet  MATH  Google Scholar 

  35. Sanyasiraju, Y., Satyanarayana, C.: On optimization of the RBF shape parameter in a grid-free local scheme for convection dominated problems over non-uniform centers. Appl. Math. Model. 37, 7245–7272 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Scheuerer, M.: An alternative procedure for selecting a good value for the parameter c in RBF-interpolation. Adv. Comput. Math. 34, 105–126 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Sergeyev, Y.D.: An information global optimization algorithm with local tuning. SIAM J. Optim. 5(4), 858–870 (1995)

    MathSciNet  MATH  Google Scholar 

  38. Sergeyev, Y.D.: A one-dimensional deterministic global minimization algorithm. Comput. Math. Math. Phys. 35(5), 705–717 (1995)

    MathSciNet  Google Scholar 

  39. Sergeyev, Y.D.: Global one-dimensional optimization using smooth auxiliary functions. Math. Program. 81(1), 127–146 (1998)

    MathSciNet  MATH  Google Scholar 

  40. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On the least-squares fitting of data by sinusoids. In: Pardalos, P.M., Zhigljavsky, A., Žilinskas, J. (eds.) Advances in Stochastic and Deterministic Global Optimization, pp. 209–226. Springer, Berlin (2016)

    Google Scholar 

  41. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: Operational zones for comparing metaheuristic and deterministic one-dimensional global optimization algorithms. Math. Comput. Simul. 141, 96–109 (2017)

    MathSciNet  Google Scholar 

  42. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On strong homogeneity of a class of global optimization algorithms working with infinite and infinitesimal scales. Commun. Nonlinear Sci. Numer. Simul. 59, 319–330 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Sci. Rep. 8, 453 (2018)

    Google Scholar 

  44. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S., De Franco, A.: Acceleration techniques in the univariate Lipschitz global optimization. In: Sergeyev, Y.D., Kvasov, D.E., Dell’Accio F., Mukhametzhanov, M.S. (eds.) AIP Conference Proceedings, vol. 1776 (090051) (2016)

  45. Sergeyev, Y.D., Mukhametzhanov, M.S., Kvasov, D.E., Lera, D.: Derivative-free local tuning and local improvement techniques embedded in the univariate global optimization. J. Optim. Theory Appl. 171(1), 186–208 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Strongin, R.G.: Numerical Methods in Multiextremal Problems (Information-Statistical Algorithms). Nauka, Moscow (1978). In Russian

    Google Scholar 

  47. Strongin, R.G., Sergeyev, Y.D.: Global optimization: fractal approach and non-redundant parallelism. J. Global Optim. 27(1), 25–50 (2003)

    MathSciNet  MATH  Google Scholar 

  48. Trahan, C.J., Wyatt, R.W.: Radial basis function interpolation in the quantum trajectory method: optimization of the multi-quadric shape parameter. J. Comput. Phys. 185, 27–49 (2003)

    MATH  Google Scholar 

  49. Uddin, M.: On the selection of a good value of shape parameter in solving time-dependent partial differential equations using RBF approximation method. Appl. Math. Model. 38, 135–144 (2014)

    MathSciNet  MATH  Google Scholar 

  50. Wahba, G.: Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59. SIAM, Philadelphia (1990)

    Google Scholar 

  51. Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  52. Yao, G., Duo, J., Chen, C., Shen, L.: Implicit local radial basis function interpolations based on function values. Appl. Math. Comput. 265, 91–102 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Zhigljavsky, A.A., Žilinskas, A.: Stochastic Global Optimization. Springer, New York (2008)

    MATH  Google Scholar 

  54. Zhigljavsky, A.A., Žilinskas, A.: Selection of a covariance function for a Gaussian random field aimed for modeling global optimization problems. Optim. Lett. 13, 249–259 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Žilinskas, A.: On similarities between two models of global optimization: statistical models and radial basis functions. J. Global Optim. 48(1), 173–182 (2010)

    MathSciNet  MATH  Google Scholar 

  56. Žilinskas, A., Zhigljavsky, A.A.: Stochastic global optimization: a review on the occasion of 25 years of Informatica. Informatica 27(2), 229–256 (2016)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. D. Sergeyev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavoretto, R., De Rossi, A., Mukhametzhanov, M.S. et al. On the search of the shape parameter in radial basis functions using univariate global optimization methods. J Glob Optim 79, 305–327 (2021). https://doi.org/10.1007/s10898-019-00853-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00853-3

Keywords

Mathematics Subject Classification

Navigation