Skip to main content

Advertisement

Log in

Convergence analysis of a projection algorithm for variational inequality problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we propose a projection based Newton-type algorithm for solving the variational inequality problems. A comprehensive study is conducted to analyze both global and local convergence properties of the algorithm. In particular, the algorithm is shown to be of superlinear convergence when the solution is a regular point. In addition, when the Jacobian matrix of the underlying function is positive definite at the solution or the solution is a non-degenerate point, the algorithm still possesses its superlinear convergence. Compared to the relevant projection algorithms in literature, the proposed algorithm is of remarkable advantages in terms of its generalization and favorable convergence properties under relaxed assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chua, C.B., Hien, L.T.K.: A suprlinearly convergent smoothing Newton continuation algorithm for variational inequalities over definable sets. SIAM J. Optim. 25, 1034–1063 (2015)

    Article  MathSciNet  Google Scholar 

  2. Daryina, A.N., Izmailov, A.F., Solodov, M.V.: A class of active-set Newton methods for mixed complementarity problems. SIAM J. Optim. 15, 409–429 (2004)

    Article  MathSciNet  Google Scholar 

  3. Dunn, J.C.: On the convergence of projected gradient processes to singular critical points. J. Optim. Theory Appl. 56, 203–216 (1987)

    Article  MathSciNet  Google Scholar 

  4. Facchinei, F., Soares, J.: A new merit function for nonlinear complementarity problem and a related algorithm. SIAM J. Optim. 7, 225–247 (1997)

    Article  MathSciNet  Google Scholar 

  5. Facchinei, F., Pang, J.S.: Finite-dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    MATH  Google Scholar 

  6. Ferris, M.C., Pang, J.S.: Nondegenerate solutions and related concepts in affine variational inequalities. SIAM J. Control Optim. 34, 244–263 (1996)

    Article  MathSciNet  Google Scholar 

  7. Ge, Z.L., Ni, Q., Zhang, X.: A smoothing inexact Newton method for variational inequalities with nonlinear constraints. J. Inequal. Appl. (2017). https://doi.org/10.1186/s13660-017-1433-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Harker, P., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990)

    Article  MathSciNet  Google Scholar 

  9. Kanzow, C., Fukushima, M.: Theoretical and numerical investigation of the D-gap function for box conatrainted variational inequalities. Math. Program. 83, 55–87 (1998)

    MATH  Google Scholar 

  10. More, J.J.: Coercivity conditions in nonlinear complementarity problems. SIAM Review 16, 1–16 (1974)

    Article  MathSciNet  Google Scholar 

  11. Pang, J.S.: Inexact Newton methods for the nonlinear complementarity problem. Math. program. 36, 54–71 (1986)

    Article  MathSciNet  Google Scholar 

  12. Peng, J.M., Fukushima, M.: A hybrid Newton method for solving the varitational inequality problem via the D-gap function. Math. Program. 86, 367–386 (1999)

    Article  MathSciNet  Google Scholar 

  13. Qi, H.D.: A regularized smoothing Newton method for box constrained variational inequality problems with \({\rm P}_{{0}}\)-functions. SIAM J. Optim. 10, 315–330 (1999)

    Article  Google Scholar 

  14. Qi, H.D., Liao, L.Z.: A smoothing Newton method for general nonlinear complementarity problems. Comput. Optim. Appl. 17, 231–253 (2000)

    Article  MathSciNet  Google Scholar 

  15. Qi, L.Q.: Boundedness and regularity properties of semismooth reformulations of variational inequalities. J. Glob. Optim. 35, 343–366 (2006)

    Article  MathSciNet  Google Scholar 

  16. Robinson, S.M.: Strongly regular generlized equations. Math. Oper. Res. 5, 43–62 (1980)

    Article  MathSciNet  Google Scholar 

  17. Schaible, S., Karmamardian, S., Crouzeix, J.-P.: Characteirizations of generalized monotone maps. J. Optim. Theory Appl. 76, 399–413 (1993)

    Article  MathSciNet  Google Scholar 

  18. Solodov, M.V.: A class of globally convergent algorithms for pseudomonotone variational inequalities, complementarity: applications, algorithms and extension. In: Ferrs, M. C., Mangasarian, O. L., Pang, J. S. (eds.) Applied Optimization, pp. 297–315. 50, Kluwer Academic Publishers, Dordrecht (2001)

    Chapter  Google Scholar 

  19. Solodov, M.V., Svaiter, B.F.: A truly globally convergent Newton-type method for the monotone nonlinear complementarity problem. SIAM J. Optim. 10, 605–625 (2000)

    Article  MathSciNet  Google Scholar 

  20. Solodov, M.V., Svaiter, B.F.: A new proximal-based globalization strategy for the Josephy-Newton method for variational inequalities. Optim. Method Softw. 17, 965–983 (2002)

    Article  MathSciNet  Google Scholar 

  21. Sun, D.: A regularization Newton method for solving nonlinear complementarity problems. Appl. Math. Optim. 40, 315–339 (1999)

    Article  MathSciNet  Google Scholar 

  22. Sun, D., Womersley, R.S.: A new unconstrained differentiable merit function for box constrained variational inequality problems and a damped Gauss–Newton method. SIAM J. Optim. 9, 388–413 (1999)

    Article  MathSciNet  Google Scholar 

  23. Sun, D., Womersley, R.S., Qi, H.Q.: A feasible semismooth asymptotically Newton method for mixed complementarity problems. Math. Program. 94, 167–187 (2002)

    Article  MathSciNet  Google Scholar 

  24. Sun, D.: A class of iterative methods for solving nonlinear equations. J. Optim. Theory Appl. 91, 123–140 (1996)

    Article  MathSciNet  Google Scholar 

  25. Taji, K., Fukushima, M.: Optimization based globally convergent methods for the nonlinear complementarity problems. J. Oper. Res. Soc. Jpn. 37, 310–331 (1994)

    Article  MathSciNet  Google Scholar 

  26. Xiu, N.H., Zhang, J.Z.: Some rencent advances in projection-type methods for variational inequalities. J. Comput. Appl. Math. 152, 559–585 (2003)

    Article  MathSciNet  Google Scholar 

  27. Xiu, N.H., Wang, C.Y., Zhang, J.Z.: Convergence properties of projection and contraction methods for variational inequality problems. Appl. Math. Optim. 43, 147–168 (2001)

    Article  MathSciNet  Google Scholar 

  28. Yamashita, N., Fukushima, M.: The proximal point algorithm with genuine superlinear convergence for the monotone complemetarity problem. SIAM J. Optim. 11, 364–379 (2000)

    Article  MathSciNet  Google Scholar 

  29. Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory I and II. In: Zarantonello, E.H. (ed.) Contribution to Nonlinear Functional Analysis, pp. 237–424. Academic Press, New York (1971)

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for the insightful and constructive comments and suggestions, which helped to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanwen Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project is supported by National Natural Science Foundation of China (No. 11271226), and the Natural Science Foundation of Shandong Province (No. ZR2018MA019).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, B., Wang, C. & Meng, F. Convergence analysis of a projection algorithm for variational inequality problems. J Glob Optim 76, 433–452 (2020). https://doi.org/10.1007/s10898-019-00848-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00848-0

Keywords

Mathematics Subject Classification

Navigation