Skip to main content
Log in

A class of exact penalty functions and penalty algorithms for nonsmooth constrained optimization problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript


In this paper, a class of smoothing penalty functions is proposed for optimization problems with equality, inequality and bound constraints. It is proved exact, under the condition of weakly generalized Mangasarian–Fromovitz constraint qualification, in the sense that each local optimizer of the penalty function corresponds to a local optimizer of the original problem. Furthermore, necessary and sufficient conditions are discussed for the inverse proposition of exact penalization. Based on the theoretical results in this paper, a class of smoothing penalty algorithms with feasibility verification is presented. Theories on the penalty exactness, feasibility verification and global convergence of the proposed algorithm are presented. Numerical results show that this algorithm is effective for nonsmooth nonconvex constrained optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Beck, A., Ben-Tal, A., Guttmann-Beck, N., Tetruashvili, L.: The CoMirror algorithm for solving nonsmooth constrained convex problems. Oper. Res. Lett. 38, 493–498 (2010)

    Article  MathSciNet  Google Scholar 

  2. Beck, A., Teboulle, M.: Smoothing and first order methods: a unified framework. SIAM J. Optim. 22, 557–580 (2012)

    Article  MathSciNet  Google Scholar 

  3. Bian, W., Chen, X.: Neural network for nonsmooth, nonconvex constrained minimization via smooth approximation. IEEE Trans. Neural Netw. Learn. Syst. 25, 545–556 (2014)

    Article  Google Scholar 

  4. Burke, J.: Calmness and exact penalization. SIAM J. Control Optim. 29, 493–497 (1991)

    Article  MathSciNet  Google Scholar 

  5. Chen, X.: Smoothing methods for nonsmooth, nonconvex minimization. Math. Program. Ser. B. 134, 71–99 (2012)

    Article  MathSciNet  Google Scholar 

  6. Chen, X., Du, S., Zhou, Y.: A smoothing trust region filter algorithm for nonsmooth least squares problems. Sci. China Math. 59, 999–1014 (2016)

    Article  MathSciNet  Google Scholar 

  7. Di Pillo, G., Grippo, L.: An exact penalty function method with global convergence properties for nonlinear programming problems. Math. Program. 36, 1–18 (1986)

    Article  MathSciNet  Google Scholar 

  8. Evans, J.P., Gould, F.J., Tolle, J.W.: Exact penalty functions in nonlinear programming. Math. Program. 4, 72–97 (1973)

    Article  MathSciNet  Google Scholar 

  9. Huyer, W., Neumaier, A.: A new exact penalty function. SIAM J. Optim. 13, 1141–1158 (2003)

    Article  MathSciNet  Google Scholar 

  10. Kiwiel, K.: Proximity control in bundle methods for convex nondifferentiable minimization. Math. Program. 46, 105–122 (1990)

    Article  MathSciNet  Google Scholar 

  11. Lan, G.: Bundle-level type methods uniformly optimal for smooth and nonsmooth convex optimization. Math. Program. Ser. A. 149, 1–45 (2015)

    Article  MathSciNet  Google Scholar 

  12. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103, 127–152 (2005)

    Article  MathSciNet  Google Scholar 

  13. Oliveira, W., Solodov, M.: A doubly stabilized bundle method for nonsmooth convex optimization. Math. Program. Ser. A 156, 125–159 (2016)

    Article  MathSciNet  Google Scholar 

  14. Qi, L., Chen, X.: A preconditioning proximal Newton method for nondifferentiable convex optimization. Math. Program. 76, 411–429 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Sagastizábal, C., Solodov, M.: An infeasible bundle method for nonsmooth convex constrained optimization without a penalty function or a filter. SIAM J. Optim. 16, 146–169 (2005)

    Article  MathSciNet  Google Scholar 

  16. Schutte, K., Waerden, B.L.: Das problem der dreizehn Kugeln. Math. Ann. 125, 325–334 (1952)

    Article  MathSciNet  Google Scholar 

  17. Shefi, R., Teboulle, M.: A dual method for minimizing a nonsmooth objective over one smooth inequality constraint. Math. Program. Ser. A. 159, 137–164 (2016)

    Article  MathSciNet  Google Scholar 

  18. Shor, N.Z.: Minimization Methods for Nondifferentiable Functions, Volume 3 of Springer Series in Computational Mathematics. Springer, Berlin (1985)

    Book  Google Scholar 

  19. Tseng, P., Bertsekas, D.P.: On the convergence of the exponential multiplier method for convex programming. Math. Program. 60, 1–19 (1993)

    Article  MathSciNet  Google Scholar 

  20. Wang, C.Y., Liu, Q., Qu, B.: Global saddle points of nonlinear augmented Lagrangian functions. J. Glob. Optim. 68, 125–146 (2017)

    Article  MathSciNet  Google Scholar 

  21. Wang, C.Y., Ma, C., Zhou, J.C.: A new class of exact penalty functions and penalty algorithms. J. Glob. Optim. 58, 51–73 (2014)

    Article  MathSciNet  Google Scholar 

  22. Xu, M.W., Ye, J.J., Zhang, L.W.: Smoothing augmented Lagrangian method for nonsmooth constrained optimization problems. J. Glob. Optim. 62, 675–694 (2015)

    Article  MathSciNet  Google Scholar 

Download references


We would like to thank the referees for their valuable and helpful comments on our manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yang Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work in this paper was supported by the National Natural Science Foundation of China (Nos. 11626147, 11271226) and Shandong Provincial Natural Science Foundation, China (No. ZR2019PA004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Xu, Y. & Zhou, Y. A class of exact penalty functions and penalty algorithms for nonsmooth constrained optimization problems. J Glob Optim 76, 745–768 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: