Skip to main content
Log in

New global optimality conditions for nonsmooth DC optimization problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this article we propose a new approach to an analysis of DC optimization problems. This approach was largely inspired by codifferential calculus and the method of codifferential descent and is based on the use of a so-called affine support set of a convex function instead of the Frenchel conjugate function. With the use of affine support sets we define a global codifferential mapping of a DC function and derive new necessary and sufficient global optimality conditions for DC optimization problems. We also provide new simple necessary and sufficient conditions for the global exactness of the \(\ell _1\) penalty function for DC optimization problems with equality and inequality constraints and present a series of simple examples demonstrating a constructive nature of the new global optimality conditions. These examples show that when the optimality conditions are not satisfied, they can be easily utilised in order to find “global descent” directions of both constrained and unconstrained problems. As an interesting theoretical example, we apply our approach to the analysis of a nonsmooth problem of Bolza.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tuy, H.: D.C. optimization: theory, methods and algorithms. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, pp. 149–216. Kluwer Academic Publishers, Dordrecht (1995)

    MATH  Google Scholar 

  2. Tuy, H.: Convex Analysis and Global Optimization. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  3. Horst, R., Thoai, N.V.: DC programming: overview. J. Optim. Theory Appl. 103, 1–43 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  5. Tuy, H.: On some recent advances and applications of D.C. optimization. In: Nguyen, V.H., Strodiot, J.J., Tossings, P. (eds.) Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 481, pp. 473–497. Springer, Berlin (2000)

    MATH  Google Scholar 

  6. Le Thi, H.A., Dinh, P.: DC programming and DCA: thirty years of development. Math. Program. 169, 5–68 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Strekalovsky, A.: On a local search for reverse convex problems. In: Liberti, L., Maculan, N. (eds.) Global Optimization. Nonconvex Optimization and Its Applications, vol. 84, pp. 33–43. Springer, Boston, MA (2006)

    Google Scholar 

  8. Bagirov, A.M., Ugon, J.: Codifferential method for minimizing nonsmooth DC functions. J. Glob. Optim. 50, 3–22 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Tor, A.H., Bagirov, A., Karasözen, B.: Aggregate codifferential method for nonsmooth DC optimization. J. Comput. Appl. Math. 259, 851–867 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Strekalovsky, A.S.: On local search in D.C. optimization problems. Appl. Math. Comput. 255, 73–83 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.: A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes. J. Glob. Optim. 68, 501–535 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Gaudioso, M., Giallombardo, G., Miglionico, G., Bagirov, A.M.: Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations. J. Glob. Optim. 71, 37–55 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M., Taheri, S.: Double bundle method for finding Clarke stationary points in nonsmooth DC programming. SIAM J. Optim. 28, 1892–1919 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Polyakova, L., Karelin, V., Myshkov, S., Stankova, E.: Some methods for minimizing of D.C. functions. In: Misra, S., et al. (eds.) Computational Science and Its Applications—ICCSA 2019. Lecture Notes in Computer Science, vol. 11622, pp. 667–677. Springer, Cham (2019)

    Google Scholar 

  15. Tuy, H.: Canonical DC programming problem: outer approximation methods revisited. Oper. Res. Lett. 18, 99–106 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Blanquero, R., Carrizosa, E.: On covering methods for D.C. optimization. J. Glob. Optim. 18, 265–274 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Tuy, H.: On global optimality conditions and cutting plane algorithms. J. Optim. Theory Appl. 118, 201–216 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Strekalovsky, A.S.: On the minimization of the difference of convex functions on a feasible set. Comput. Math. Math. Phys. 43, 380–390 (2003)

    MathSciNet  Google Scholar 

  19. Ferrer, A., Martínez-Legaz, J.E.: Improving the efficiency of DC global optimization methods by improving the DC representation of the objective function. J. Glob. Optim. 43, 513–531 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Bigi, G., Frangioni, A., Zhang, Q.: Outer approximation algorithms for canonical DC problems. J. Glob. Optim. 46, 163–189 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Bigi, G., Frangioni, A., Zhang, Q.: Approximate optimality conditions and stopping criteria in canonical DC programming. Optim. Methods Softw. 25, 19–27 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Strekalovsky, A.S., Yanulevich, M.V.: On global search in nonconvex optimal control problems. J. Glob. Optim. 65, 119–135 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Tuy, H.: Convex programs with an additional reverse convex constraint. J. Optim. Theory Appl. 52, 463–486 (1987)

    MathSciNet  MATH  Google Scholar 

  24. Tuy, H.: Global minimization of a difference of two convex functions. In: Cornet, B., Nguyen, V.H., Vial, J.P. (eds.) Nonlinear Analysis and Optimization. Mathematical Programming Studies, vol. 30, pp. 150–182. Springer, Berlin (1987)

    Google Scholar 

  25. Hiriart-Urruty, J.-B.: From convex minimization to nonconvex minimization. Necessary and sufficient conditions for global optimality. In: Clarke, F.N., Demyanov, V.F., Giannessi, F. (eds.) Nonsmooth Optimization and Related Topics, pp. 219–239. Plenum, New York (1989)

    MATH  Google Scholar 

  26. Hiriart-Urruty, J.-B.: Conditions for global optimality. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, pp. 1–26. Kluwer Academic Publishers, Dordrecht (1995)

    MATH  Google Scholar 

  27. Jeyakumar, V., Glover, B.M.: Characterizing global optimality for DC optimization problems under convex inequality constraints. J. Glob. Optim. 8, 171–187 (1996)

    MathSciNet  MATH  Google Scholar 

  28. Hiriart-Urruty, J.-B.: Conditions for global optimality 2. J. Glob. Optim. 13, 349–367 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Dür, M., Horst, R., Locatelli, M.: Necessary and sufficient global optimality conditions for convex maximization revisited. J. Math. Anal. Appl. 217, 637–649 (1998)

    MathSciNet  MATH  Google Scholar 

  30. Strekalovsky, A.S.: Global optimality conditions for nonconvex optimization. J. Glob. Optim. 12, 415–434 (1998)

    MathSciNet  MATH  Google Scholar 

  31. Singer, I.: Duality for Nonconvex Approximation and Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  32. Dinh, N., Nghia, T.T.A., Vallet, G.: A closedness condition and its applications to DC programs with convex constraints. Optimization 59, 541–560 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Polyakova, L.N.: On global unconstrained minimization of the difference of polyhedral functions. J. Glob. Optim. 50, 179–195 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Zhang, Q.: A new necessary and sufficient global optimality condition for canonical DC problems. J. Glob. Optim. 55, 559–577 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Strekalovsky, A.S.: Global optimality conditions in nonconvex optimization. J. Optim. Theory Appl. 173, 770–792 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Strekalovsky, A.S.: Global optimality conditions and exact penalization. Optim. Lett. 13, 597–615 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Demyanov, V.F.: Continuous generalized gradients for nonsmooth functions. In: Kurzhanski, A., Neumann, K., Pallaschke, D. (eds.) Optimization, Parallel Processing and Applications, pp. 24–27. Springer, Berlin (1988)

    Google Scholar 

  38. Demyanov, V.F.: On codifferentiable functions. Vestn. Leningr. Univ. Math. 2, 22–26 (1988)

    MathSciNet  MATH  Google Scholar 

  39. Demyanov, V.F.: Smoothness of nonsmooth functions. In: Clarke, F.H., Demyanov, V.F., Giannesssi, F. (eds.) Nonsmooth Optimization and Related Topics, pp. 79–88. Springer, Boston (1989)

    Google Scholar 

  40. Demyanov, V.F., Rubinov, A.M.: Constructive Nonsmooth Analysis. Peter Lang, Frankfurt a. M. (1995)

    MATH  Google Scholar 

  41. Demyanov, V.F., Bagirov, A.M., Rubinov, A.M.: A method of truncated codifferential with applications to some problems of cluster analysis. J. Glob. Optim. 23, 63–80 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Dolgopolik, M.V.: A convergence analysis of the method of codifferential descent. Comput. Optim. Appl. 71, 879–913 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Dolgopolik, M.V.: The method of codifferential descent for convex and global piecewise affine optimization. Optim. Methods Softw. (2019). https://doi.org/10.1080/10556788.2019.1571590

    Article  Google Scholar 

  44. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. SIAM, Philadelphia (1999)

    MATH  Google Scholar 

  45. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II. Advanced Theory and Bundle Methods. Springer, Berlin (1993)

    MATH  Google Scholar 

  46. Rubinov, A.M.: Abstract Convexity and Global Optimization. Kluwer Academic Publishers, Boston (2000)

    MATH  Google Scholar 

  47. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Fundamentals. Springer, Berlin (1993)

    MATH  Google Scholar 

  48. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  49. Dolgopolik, M.V.: Abstract convex approximations of nonsmooth functions. Optimization 64, 1439–1469 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Kumar, D., Lucet, Y.: Computation of the epsilon-subdifferential of convex piecewise linear-quadratic functions in optimal worst-case time. Set-Valued Var. Anal. 27, 623–641 (2019)

    MathSciNet  MATH  Google Scholar 

  51. Gorokhovik, V.V., Zorko, O.I.: Piecewise affine functions and polyhedral sets. Optimization 31, 209–221 (1994)

    MathSciNet  MATH  Google Scholar 

  52. Ioffe, A.D.: Necessary and sufficient conditions for a local minimum. 1: a reduction theorem and first order conditions. SIAM J. Control Optim. 17, 245–250 (1979)

    MathSciNet  MATH  Google Scholar 

  53. Dolgopolik, M.V.: A unifying theory of exactness of linear penalty functions. Optimization 65, 1167–1202 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Dolgopolik, M.V.: A unified approach to the global exactness of penalty and augmented Lagrangian functions I: parametric exactness. J. Optim. Theory Appl. 176, 728–744 (2018)

    MathSciNet  MATH  Google Scholar 

  55. Azé, D.: A unified theory for metric regularity of multifunctions. J. Convex Anal. 13, 225–252 (2006)

    MathSciNet  MATH  Google Scholar 

  56. Gfrerer, H.: First order and second order characterization of metric subregularity and calmness of constraint set mappings. SIAM J. Optim. 21, 1439–1474 (2011)

    MathSciNet  MATH  Google Scholar 

  57. Kruger, A.Y.: Error bounds and metric subregularity. Optimization 64, 49–79 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Cominetti, R.: Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim. 21, 265–287 (1990)

    MathSciNet  MATH  Google Scholar 

  59. Le Thi, H.A., Dinh, T.P., Van Ngai, H.: Exact penalty and error bounds in DC programming. J. Glob. Optim. 52, 509–535 (2012)

    MathSciNet  MATH  Google Scholar 

  60. Demyanov, V.F.: Conditions for an extremum in metric spaces. J. Glob. Optim. 17, 55–63 (2000)

    MathSciNet  MATH  Google Scholar 

  61. Dolgopolik, M.V.: A unifying theory of exactness of linear penalty functions II: parametric penalty functions. Optimization 66, 1577–1622 (2017)

    MathSciNet  MATH  Google Scholar 

  62. Dolgopolik, M.V.: Nonsmooth problems of calculus of variations via codifferentiation. ESAIM Control Optim. Calc. Var. 20, 1153–1180 (2014)

    MathSciNet  MATH  Google Scholar 

  63. Ioffe, A.D., Rockafellar, R.T.: The Euler and Weierstrass conditions for nonsmooth variational problems. Calc. Var. Partial Differ. Equ. 4, 59–87 (1996)

    MathSciNet  MATH  Google Scholar 

  64. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston (1990)

    MATH  Google Scholar 

  65. Leoni, G.: A First Course in Sobolev Spaces. American Mathematical Society, Providence, RI (2009)

    MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to express his gratitude to the anonymous reviewers for their valuable comments and suggestions that helped to clarify some theoretical results and significantly improve the overall quality of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Dolgopolik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The results presented in this paper were supported by the President of Russian Federation Grant for the support of young Russian scientist (Grant Number MK-3621.2019.1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgopolik, M.V. New global optimality conditions for nonsmooth DC optimization problems. J Glob Optim 76, 25–55 (2020). https://doi.org/10.1007/s10898-019-00833-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00833-7

Keywords

Mathematics Subject Classification

Navigation